

Chapter 9. Radial Gradients

Linear gradients, as we have seen, are defined by the coordinates of a line (the gradient vector). The color stops are positions along this line. Each color value is then extended to infinity in a straight line on either side. By adjusting the stops and manipulating the vector, linear gradients can create many effects. But they aren’t the only gradient option in SVG.

A radial gradient is one in which color changes radiate outward from a central point. These gradients can create the appearance of a glowing light, or can be used to represent the shading on spheres and similar rounded structures.

In its simplest form, a radial gradient is defined by a circle, with the colors changing from the circle’s center to its edge. This is the default behavior for SVG’s <radialGradient> element. As usual, the default behavior is not the only option, and you can create a number of effects with SVG radial gradients—including effects you cannot yet create with CSS gradients.

This chapter looks at all the possibilities, skimming through the areas where radial gradients are similar to linear gradients and focusing on the differences. The final section looks at the big picture, showing how you can combine many different gradients to create a complex scene.

Radial Gradient Basics

Radial gradients are similar to linear gradients in structure, at least in the markup. As with <linearGradient>, a <radialGradient> is a container for <stop> elements, each of which have an offset attribute with values between 0 and 1 (or 0% and 100%). The value at each stop is still specified with stop-color and stop-opacity styles or presentation attributes.

The difference is in how those stop offsets are mapped to the two-dimensional space being filled.

For radial gradients, the offset is a proportion of the distance between the starting point and the ending circle. You can modify both the position of the starting point (known as the focal point) and the size and position of the ending circle.

By default—when a <radialGradient> does not have any positioning attributes—the ending circle is the largest circle that will fill the object bounding box, and the focal point is its center.

Example 9-1 adapts four of the basic red-blue gradients that were used to introduce stops and offsets in Chapter 6; the stops are the same, except now they are inside <radialGradient> elements.

Tip

If the radial gradients used in Example 9-1 were in the same file as their linear counterparts, we could have used xlink:href to copy the stops, even though they are different gradient types.

The gradients in Example 9-1 are used to fill circles, with the result shown in Figure 9-1.

[image: scpg 0901]
Figure 9-1. Radial gradients with various stop patterns

Example 9-1. Creating radial gradients to fill circles

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1in">
 <title xml:lang="en">Radial Gradients</title>
 <radialGradient id="red-blue">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </radialGradient>
 <radialGradient id="red-blue-2">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="0.3"/>
 <stop stop-color="red" offset="1"/>
 </radialGradient>
 <radialGradient id="red-blue-3">
 <stop stop-color="red" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
 </radialGradient>
 <radialGradient id="red-blue-4">
 <stop stop-color="red" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
 <stop stop-color="red" offset="0.7"/>
 </radialGradient>
 <circle r="0.5in" cy="50%" cx="12.5%" fill="url(#red-blue)" />
 <circle r="0.5in" cy="50%" cx="37.5%" fill="url(#red-blue-2)" />
 <circle r="0.5in" cy="50%" cx="62.5%" fill="url(#red-blue-3)" />
 <circle r="0.5in" cy="50%" cx="87.5%" fill="url(#red-blue-4)" />
</svg>

Instead of the color stops being drawn as parallel lines, they are drawn as concentric circles. When the color transitions are sharp, as in the last sample, this creates a bull’s-eye effect.

Filling the Box

When filling a circle with a radial gradient, the ending circle of the gradient—the largest circle that will fill the object bounding box—is the circle itself. The gradient therefore fits the shape perfectly. In cases where it doesn’t, the extra space is filled according to the spreadMethod property, which means that, by default, they are padded with the final stop color.

Figure 9-2 shows the gradients from Example 9-1 used to fill 1-inch-square rectangles.

[image: scpg 0902]
Figure 9-2. Squares filled with radial gradients

Radial gradients also neatly fill <ellipse> elements, as demonstrated in Figure 9-3; each stop now represents a concentric ellipse.

[image: scpg 0903]
Figure 9-3. Ellipses filled with radial gradients

The same elliptical pattern is also seen when the gradients fill rectangles that are the same size as the ellipse’s bounding box, as shown in Figure 9-4.

[image: scpg 0904]
Figure 9-4. Non-square rectangles filled with radial gradients

Again, the results in Figures 9-3 and 9-4 use the exact same gradients that were defined in Example 9-1; there are no attributes on the gradient elements that indicate an elliptical pattern should be used. Instead, the elliptical pattern is a direct result of the stretched coordinate system created by object bounding box units. The stop patterns are still mathematically “circles,” in that each point with that stop’s color is the same distance from the center point—but only when you measure it in the stretched coordinates.

Tip

The only way to create a radial SVG gradient that always follows a perfect circular shape, regardless of the bounding box dimensions, is to use gradientUnits="userSpaceOnUse". You will then need to use other properties to size and position the gradient to match the shape it will fill.

When filling squares or rectangles, the 100% stop offset is positioned around the (possibly stretched) circle that just touches each side. In the figures, however, the solid-color padding camouflages this boundary. The spreadMethod attribute can again be used to change the padding effect, and again the other options are repeat and reflect.

Warning

As mentioned in Chapter 8, WebKit browsers do not support repeating or reflecting gradients at the time of writing. Older versions of other browsers (pre-2014 Firefox and pre-2013 Chrome) will also pad the gradient irrespective of the spreadMethod.

When you repeat or reflect a radial gradient, you do not end up with a dotted pattern of repeating circles. Instead, the color pattern along each ray—radiating outward from the central point—is extended, repeating or reflecting, until it reaches the edge of the shape. This dramatically changes the look of the corners when a radial gradient is used to fill a rectangle. The different options are used in Example 9-2; the effects are shown in Figure 9-5.

[image: scpg 0905]
Figure 9-5. Radial gradients with different spread methods: pad (left), repeat (center), and reflect (right)

Example 9-2. Changing the corner effect using spreadMethod

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="1in">
 <title xml:lang="en">Repeating Radial Gradients</title>
 <radialGradient id="red-blue" spreadMethod="pad">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </radialGradient>
 <radialGradient id="repeat" spreadMethod="repeat"
 xlink:href="#red-blue" />
 <radialGradient id="reflect" spreadMethod="reflect"
 xlink:href="#red-blue" />

 <rect height="1in" width="32%" x="0" fill="url(#red-blue)" />
 <rect height="1in" width="32%" x="34%" fill="url(#repeat)" />
 <rect height="1in" width="32%" x="68%" fill="url(#reflect)" />
</svg>

With a repeating gradient, the color switches instantaneously along the edge of the circle/ellipse, to restart at the first color stop. With a reflected gradient, the edge is shown as a peak before the color shifts back. To really see these effects, however, we will first need to create a radial gradient where the gradient circle doesn’t fill up the entire bounding box.

Radial Gradients in CSS

CSS also has radial gradients, defined using the radial-gradient function. As with linear gradients, the syntax and options are similar but not identical to SVG gradients.

One important feature of CSS radial gradients—not currently supported in SVG—is the ability to select between circular and elliptical gradient shapes. The optional first parameter to the radial-gradient function is a description of the final shape. It can include the keyword circle to force the gradient to follow a perfect circle, regardless of the aspect ratio of the image being generated, or the keyword ellipse to stretch to fit the box.

A perfect circle inside a non-square box cannot just touch all sides of the box. The shape parameter therefore also contains sizing information, which can be used for both circles and ellipses. The simplest way to specify the size is to use one of the four sizing keywords: closest-side, farthest-side, closest-corner, or farthest-corner.

The information about the ending shape and size of the gradient is followed by a comma and then a comma-separated list of color stops. For example, the following background style rule produces the gradient in Figure 9-6:

background: radial-gradient(circle closest-side,
 red, lightSkyBlue);

[image: scpg 0906]
Figure 9-6. Circular CSS gradient

The default shape is ellipse and the default size is farthest-corner, so the following gradients are all equivalent:

background: radial-gradient(red, lightSkyBlue);
background: radial-gradient(ellipse,
 red 0%, lightSkyBlue);
background: radial-gradient(farthest-corner,
 red, lightSkyBlue 100%);
background: radial-gradient(farthest-corner ellipse,
 red 0%, lightSkyBlue 100%);

Using farthest-corner means that there are no empty corners to pad, but it also means that the final color stop will only be visible in the corners, as shown in Figure 9-7:

[image: scpg 0907]
Figure 9-7. Elliptical CSS gradient

The positions of individual color stops can be defined using lengths with units or as percentages. When percentages are used, they are a percentage of the circle/ellipse radius. When lengths are used for elliptical gradients, they are measured along the horizontal radius of the ellipse. If an offset is not specified, the colors are distributed evenly in the space available.

As with linear gradients, CSS has a separate repeating-radial-gradient function. The parameters are the same as for the normal radial gradient; the size of each cycle of the gradient will be calculated from the difference between the first and last offset.

Warning

When the first offset is non-zero, Blink and WebKit browsers currently fill in the center of the circle with that solid color. Firefox and Internet Explorer repeat the gradient inward as well as out, following the specification’s generic instructions (for all types of gradients) to repeat the cycle “in both directions.”

Again, to create a reflected gradient, you must make the gradient circle twice as large and then double the color stops yourself.

Scaling the Circle

You know by now that the default position and size of a linear gradient can be changed with attributes on the gradient element. The same is true for radial gradients. Just as the positioning attributes for <linearGradient> looked much like the attributes for a <line>, so the positioning attributes for a <radialGradient> look much like those of a <circle>.

The attributes cx, cy, and r on a <radialGradient> define the size and position of the 100% offset circle. They are all equal to 50% by default, which creates a circle centered in the coordinate system and filling its full width and height. The focal point (the point with the 0% offset color) by default shifts to match the (cx,cy) point.

Example 9-3 modifies these attributes to create a small circular gradient off-center in userSpaceOnUse coordinate system. This provides enough space, between the edge of the gradient circle and the edge of the shape, that a reflect spread method can create a nice ripple effect, like the waves from a raindrop in a puddle, as shown in Figure 9-8.

[image: scpg 0908]
Figure 9-8. A reflecting radial gradient with a fixed circle size

Example 9-3. Controlling the size and position of a radial gradient

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="2in">
 <title xml:lang="en">Repeating Radial Ripples</title>
 <radialGradient id="raindrop" spreadMethod="reflect"
 gradientUnits="userSpaceOnUse"
 cx="30%" cy="70%" r="15px">
 <stop stop-color="lightSteelBlue" offset="0.4"/>
 <stop stop-color="darkSlateGray" offset="0.8"/>
 <stop stop-color="darkSlateBlue" offset="1"/>
 </radialGradient>
 <rect height="100%" width="100%" fill="url(#raindrop)" />
</svg>

The radius of the base circle is 15px, so for every 15px distance, the gradient cycles through the list of stops—in one direction or the other. The dark rings in the figure are spaced 30px apart, the distance required to cycle through the reflected gradient in both directions.

In contrast, with spreadMethod="repeat", you see the individual repetitions (and 15px spacing) more clearly, as shown in Figure 9-9.

[image: scpg 0909]
Figure 9-9. A repeating radial gradient with a fixed circle size

Controlling the Size and Position of
CSS Radial Gradients

You can control the size and position of the gradient circle in CSS by adding more information to the first parameter of the radial-gradient or repeating-radial-gradient function.

The full syntax for that first parameter is given as follows:

[<ending-shape> || <size>]? [at <position>]?

Translated into English that means: optionally, the shape and/or the size, in either order, optionally followed by the keyword at and the position.

The shape is one of the keywords circle or ellipse. The size can be given as a closest/farthest-side/corner keyword or it can be given as explicit radius lengths. Circles have one radius length, ellipses have two: horizontal radius first, then vertical radius. The shape keyword is not required when you use lengths for the size, because it can be determined from the number of length values.

For elliptical gradients, the two radius values can also be specified as percentages of the image width and height, respectively. You cannot currently specify the size of a circular CSS gradient using percentages.
Future versions of CSS gradients may adopt SVG’s method of calculating circular radius percentages proportional to the diagonal length; this is now used in the CSS Shapes Module for circles.

The position of a CSS radial gradient is equivalent to the cx and cy attributes for SVG. It may be given as lengths or percentages, or as a combination of the keywords used for specifying CSS background position. The keyword at must be included in order to distinguish position information from sizing information. The default position is at center, or at 50% 50%.

Tip

When positioning a gradient at a side or corner (e.g., at right top), the distance to the closest-side or closest-corner may be zero, collapsing circular gradients into a point and elliptical gradients into linear gradients.

With all that information—and remembering that CSS does not have reflected gradients, only simple repeating ones—the ripples in a puddle gradient from Example 9-3 can be re-created in CSS with the following code:

background: repeating-radial-gradient(
 30px at 30% 70%,
 lightSteelBlue 0%, lightSteelBlue 20%,
 darkSlateGray 40%, darkSlateBlue 50%,
 darkSlateGray 60%,
 lightSteelBlue 80%, lightSteelBlue 100%);

The circle’s radius has been doubled (from 15px to 30px) to make room for both reflections of the gradient; similarly, the percentage offsets have been cut in half (so that 100% in the SVG gradient becomes 50% of the CSS gradient cycle) and the stops have been duplicated to fill in the rest of the cycle. Unlike with repeating linear gradients, you do not have to worry about percentage offsets upsetting your gradient scale—they are always percentages of the shape radius you specify.

Adjusting the Focus

There are two other positioning attributes for a radial gradient: fx and fy. These are the coordinates of the focal point of the gradient. While the gradient circle describes the position of the 100% offset stop, the focal point describes the position of the 0% stop.

The gradients we’ve seen have used the default focal point, which coincides with the circle’s center; the default value of fx is the value of cx and the default for fy is the value of cy. Any other values create an asymmetrical gradient.

What does it mean to have a focal point other than the center of the circle? It means that the length of the gradient cycle will be different in every direction. Every ray radiating out from that point will pass through all the stop colors by the time it reaches the edge of the circle.

Warning

The focal point should be inside the gradient circle; if it isn’t, according to SVG 1.1, it would be shifted to exactly meet the nearest edge of the circle. SVG 2 proposes a different behavior, based on what is currently used in HTML canvas gradient functions. In other words, don’t expect a consistent appearance cross-browser if the focal point is outside the circle!

What does it look like to have a focal point other than the center of the circle? The effect is to compress the gradient in one direction while expanding it in the other. It’s probably easiest just to show you.

Example 9-4 constructs a grid of gradients, shifting the focal point to left and right of center using fx, and shifting the center of the gradient circle up and down using cy. The resulting combinations are shown in Figure 9-10.

The example uses a spreadMethod of reflect to show how the repeat distance in any given direction matches the original distance between the focal point and the circle’s edge. It also just looks really cool!

[image: scpg 0910]
Figure 9-10. Comparison of changes in the center of radial gradients (rows) and changes in the focal point position (columns)

Example 9-4. Controlling the size and position of a radial gradient

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in">
 <title xml:lang="en">Focus Point Versus Center Point</title>
 <defs>
 <radialGradient id="center" spreadMethod="reflect"
 r="30%"> [image: 1]
 <stop stop-color="darkRed" offset="0"/>
 <stop stop-color="lightYellow" offset="1"/>
 </radialGradient>
 <radialGradient id="left" xlink:href="#center"
 fx="25%"/> [image: 2]
 <radialGradient id="right" xlink:href="#center"
 fx="75%"/>

 <radialGradient id="left-up" xlink:href="#left"
 cy="25%"/> [image: 3]
 <radialGradient id="left-down" xlink:href="#left"
 cy="75%"/>
 <radialGradient id="center-up" xlink:href="#center"
 cy="25%"/>
 <radialGradient id="center-down" xlink:href="#center"
 cy="75%"/>
 <radialGradient id="right-up" xlink:href="#right"
 cy="25%"/>
 <radialGradient id="right-down" xlink:href="#right"
 cy="75%"/>

 <rect id="r" width="30%" height="30%" /> [image: 4]
 </defs>

 <use xlink:href="#r" x="0%" y="0%" fill="url(#left-up)"/>
 <use xlink:href="#r" x="35%" y="0%" fill="url(#center-up)"/>
 <use xlink:href="#r" x="70%" y="0%" fill="url(#right-up)"/>
 <use xlink:href="#r" x="0%" y="35%" fill="url(#left)"/>
 <use xlink:href="#r" x="35%" y="35%" fill="url(#center)"/>
 <use xlink:href="#r" x="70%" y="35%" fill="url(#right)"/>
 <use xlink:href="#r" x="0%" y="70%" fill="url(#left-down)"/>
 <use xlink:href="#r" x="35%" y="70%" fill="url(#center-down)"/>
 <use xlink:href="#r" x="70%" y="70%" fill="url(#right-down)"/>
</svg>

	[image: 1]

	The gradient that will be used for the center block uses the default, centered, circle and focal point. The radius is set at 30% of the object bounding box, to leave room for the repeat effects.

	[image: 2]

	The other gradients for the center row are created by adjusting the fx to left or right of center, after duplicating the color stops and radius from the first gradient using xlink:href.

	[image: 3]

	The remaining gradients duplicate the color stops, radius, and focal point from one of the previous gradients, and then adjust the cy value.

	[image: 4]

	Because there will be nine rectangles with the same width and height, a predefined shape is created and then duplicated with <use> elements.

As you can see, changing the center point of the gradient circle has the effect of translating the entire gradient pattern. Changing the focal point, in contrast, significantly changes the overall pattern of the gradient, particularly in the repeats.

Tip

If you changed the center point without changing the focal point, that would change the look of the gradient considerably, of course. In Example 9-4, the fy vertical position of the gradient isn’t set, so it automatically adjusts to match the change in cy.

Widening the Focus Beyond a Point

SVG 2 adds a new fr attribute to radial gradients. It would define a circle around the focus point that would represent the 0% offset for the gradient. A similar parameter is already available in HTML canvas drawing functions.

When the focal point is the center of the main circle, the resulting gradient is the same as having a non-zero first stop offset, except that the extra spacing would not be included in the repeat cycles. For asymmetrical gradients, the geometry would be distinct from anything that can currently be generated in SVG.

Transforming Radial Gradients

The gradientTransform attribute applies to <radialGradient>, and functions in the same way that it does for linear gradients—it changes the underlying coordinate system of the gradient, translating, rotating, scaling, or skewing not only the center point but the entire gradient.

Once again, you have to watch out for the effects of the stretched object bounding box coordinate system. No matter how you rotate an objectBoundingBox radial gradient, it will always be stretched out along the longer axis of the shape.

You can, however, create an ellipse stretched along a different axis by using a skew transformation. Example 9-5 uses the same skew transformation on three versions of a gradient which differ according to their focal point, as shown in Figure 9-11.

[image: scpg 0911]
Figure 9-11. Skewed radial gradients, with different focal points

Example 9-5. Skewing radial gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="1in">
 <title xml:lang="en">Skewed Radial Gradients</title>
 <defs>
 <radialGradient id="center" spreadMethod="repeat" r="40%"
 gradientTransform="translate(-0.3,0) skewX(30)"> [image: 1]
 <stop stop-color="indigo" offset="0"/>
 <stop stop-color="lightPink" offset="0.5"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
 <stop stop-color="indigo" offset="1"/> [image: 2]
 </radialGradient>
 <radialGradient id="left" xlink:href="#center"
 fx="25%"/>
 <radialGradient id="right" xlink:href="#center"
 fx="75%"/> [image: 3]

 <rect id="r" width="30%" height="100%" />
 </defs>

 <use xlink:href="#r" x="0%" y="0%" fill="url(#left)"/>
 <use xlink:href="#r" x="35%" y="0%" fill="url(#center)"/>
 <use xlink:href="#r" x="70%" y="0%" fill="url(#right)"/>
</svg>

	[image: 1]

	The skewX(30) transformation will shift points on the gradient to the right to an increasing amount as the y-position increases.

	[image: 2]

	The gradient uses the repeat spread method, so the order of stops will not alternate. However, the first and last stop have the same color, avoiding a sharp transition.

	[image: 3]

	As in Example 9-4, the alternative gradients are created by shifting the focal point left and right.

The gradientTransform used in Example 9-5 also includes a horizontal translation to reposition the center of the gradient, which will also be affected by the skew.

Tip

Transformations on a <radialGradient> are calculated relative to the origin (top-left corner) of the coordinate system, not the center of the gradient.

Skews and off-center focal points allow radial gradients to go beyond perfect geometric symmetry and provide a sense of three-dimensionality. They are therefore one way in which gradients can be used as part of realistic drawings.

Grand Gradients

To create nuanced representations of real objects, you need to factor in the variation in color created by light and shadow. SVG includes filter functions expressly intended to simulate lighting effects, but these add extra processing time. If you can use gradients to achieve the same effect, it will often be much more efficient—particularly if you are going to animate the image later.

Figure 9-12 compares the two effects. One shape uses an asymmetrical radial gradient to simulate a yellow light shining on a red ball, the other uses lighting filters to achieve a similar effect. The gradient does not create quite the same three-dimensional curve as the filter, but it is close. The complete code is presented in Example 9-6.

[image: scpg 0912]
Figure 9-12. A spotlit ball, approximated with gradients (left) or calculated with lighting filters (right)

Example 9-6. Creating lighting effects with gradients or filters

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="2in" >
 <title xml:lang="en">Simulated Lighting Versus
 Lighting Filters</title>

 <radialGradient id="faux-lighting"
 cx="45%" cy="45%" r="60%"
 fx="30%" fy="30%" > [image: 1]
 <stop offset="0.1" stop-color="lightYellow" />
 <stop offset="0.9" stop-color="darkRed" /> [image: 2]
 </radialGradient>
 <circle cx="25%" cy="50%" r="0.9in"
 fill="url(#faux-lighting)"/> [image: 3]

 <filter id="yellow-glow" primitiveUnits="objectBoundingBox">
 <feGaussianBlur in="SourceAlpha" stdDeviation="0.3" />
 <feComposite in2="SourceAlpha" operator="in" /> [image: 4]
 <feSpecularLighting surfaceScale="0.1"
 specularConstant="1"
 specularExponent="20"
 lighting-color="lightYellow"
 result="highlight">
 <fePointLight x="0.35" y="0.35" z="0.7"/> [image: 5]
 </feSpecularLighting>
 <feComposite in="SourceGraphic" in2="highlight"
 operator="arithmetic"
 k1="0" k2="1" k3="0.9" k4="0" />
 <feComposite in2="SourceAlpha" operator="in" /> [image: 6]
 </filter>
 <circle cx="75%" cy="50%" r="0.9in"
 fill="darkRed" filter="url(#yellow-glow)" /> [image: 7]
</svg>

	[image: 1]

	The <radialGradient> defines a circle that is slightly larger than the bounding box, and off-center towards the upper left. The focal point is shifted even further to the upper left. This side of the shape will therefore be more strongly influenced by the initial color stops, while the bottom right will be dominated by the final color stop.

	[image: 2]

	The stops are offset slightly from the start and end of the gradient rays, creating a small circle of solid light yellow around the focal point and revealing the final red at the far edge of the gradient circle.

	[image: 3]

	The effect is applied simply as the fill property of the first circle.

	[image: 4]

	The filter starts by generating a blurred version of the alpha channel of the shape, then clipping it to the original shape edges. This creates a layer whose alpha value decreases as it gets closer to the shape’s edges.

	[image: 5]

	The lighting filter uses the alpha channel from the previous step as a bump map to define the three-dimensional shape of an object. It then calculates the amount of light that would be added to the shape, using the various attributes to define the reflectiveness of the shape and using the <fePointLight> element to define the position and pattern of incident light. The lighting-color property specifies the same light yellow color for the light.

	[image: 6]

	The final steps combine the lighting effect with the underlying colored graphic, again clipping it so the light is only visible on the parts of the shape that were originally opaque.

	[image: 7]

	The second circle is filled in solid with darkRed, and then has the lighting glow applied via the filter property.

One strong justification for using gradients instead of lighting filters, currently, is cross-browser consistency. The lighting filters are inconsistenly implemented between browsers, if they are implemented at all.

Warning

WebKit does not currently implement the lighting effect filters; these filter elements return a transparent layer. Given the way the layers are combined in Example 9-6, this results in the original flat red circle being displayed; for other filter combinations, the graphic could disappear completely.

Even in browsers that support filter lighting effects, the exact implementations vary considerably. Figure 9-12 showed the result in Firefox; Figure 9-13 is the same code rendered by Chrome, with a much stronger washed-out effect of the light. Internet Explorer generates an image in-between the two.

[image: scpg 0913]
Figure 9-13. A different browser’s rendering of the spotlit ball, with gradients (left) and with filters (right)

The other reason to opt for gradients over filters is performance, for two reasons. First, the lighting-filter is a many-step computation while gradient generation is a single function. Second, filters are calculated on the rendered, rasterized image, and therefore need to be recalculated any time the underlying shape changes or moves.

Mimicking a Focal Point with CSS Radial Gradients

There is currently no way in CSS to adjust the focal point of the gradient. In some cases—for non-repeating gradients—you can mimic the effect of an asymmetrical focal point by using layered background images. The focal point color is drawn as a color-to-transparent gradient or gradients, overtop of another gradient representing the ending shape.

Using this approach, Example 9-7 re-creates the spotlit red ball with CSS gradients. Figure 9-14 shows the result beside the original SVG gradient version.

[image: scpg 0914]
Figure 9-14. Generating a focal point gradient effect, with a single SVG gradient (left) and with layered CSS gradients (right)

Example 9-7. Simulating off-center radial lighting with layered CSS gradients

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>CSS and SVG Simulated Lighting Gradients</title>
 <style type='text/css'>
 html, body {
 height: 2in;
 width: 4in;
 margin: 0; padding: 0;
 text-align: center; [image: 1]
 }
 svg, div.sphere {
 height: 1.8in;
 width: 1.8in;
 display: block;
 float: left;
 margin: 0.1in;
 }
 div.sphere {
 border-radius: 50%;
 background:
 radial-gradient(ellipse 40% 40% at 32% 32%,
 lightYellow 15%,
 rgba(100%, 100%, 88%, 0.5) 40%,
 transparent),
 radial-gradient(ellipse 55% 55% at 40% 40%,
 rgba(100%, 100%, 88%, 0.4) 20%,
 transparent),
 radial-gradient(ellipse 60% 60% at 45% 45%,
 rgb(100%,55%,45%), darkRed 90%); [image: 2]
 }
 </style>
</head>
<body>
 <svg>
 <radialGradient id="faux-lighting"
 cx="45%" cy="45%" r="60%"
 fx="30%" fy="30%" >
 <stop offset="0.1" stop-color="lightYellow" />
 <stop offset="0.9" stop-color="darkRed" />
 </radialGradient>
 <circle cx="50%" cy="50%" r="50%"
 fill="url(#faux-lighting)"/> [image: 3]
 </svg>
 <div class="sphere"></div> [image: 4]
</body>
</html>

	[image: 1]

	The first two CSS rules layout the overall web page to match the SVG layout from Example 9-6, including the (not usually recommended) absolute dimensions for the entire page.

	[image: 2]

	The gradient effect is applied as layered background images, with three separate radial-gradient functions combining to create the shift from the focal point to the ending circle. The in-between stops use a partially transparent version of the lightYellow color, created with the rgba color function.

	[image: 3]

	The SVG gradient is included for comparison as inline SVG code.

	[image: 4]

	The HTML markup for the CSS gradient is a single <div> element to display the background content.

Warning

For optimal results on all browsers, the transparent keyword used in Example 9-7 should be replaced with another rgba function that matches the light yellow highlight color. Some older versions of Firefox will shift colors toward black when transitioning to the transparent keyword (which is officially transparent black). The specifications now provide explicit guidance that avoids this problem.

There are currently proposals to add focal point parameters (including a focal radius) to CSS gradients to make this effect easier, but the exact syntax has not yet been finalized.

SVG gradients are a deceptively simple topic. There may only be two types of gradients, linear and radial, but there are numerous possible variations to create different effect. Using all these variations, gradients can add considerable nuance and detail to simple vector shapes.

Gradients are a major part of the SVG developer’s toolkit, and they can be used to create remarkably complex and sophisticated images. In most cases, these images do not consist of a single, geometrically exact gradient, but rather multiple, overlapping elements with partially transparent gradients.

A good exercise is to consider something like a theatrical stage, complete with red velvet side and top curtains and a stage with a spotlight. As a graphic, it’s handy for highlighting a given object—a picture, slide, video or block of text—and because it is SVG, the curtains can even be directly manipulated to open and close.

When curtain fabric folds in and out, it is caught by the available light to show areas of brightness and shadow, which can be represented well with a shaded red gradient. One of us (Amelia) had previously created a poor approximation of this scene using simple rectangles filled with repeating gradients. The version displayed in Figure 9-15 was created by Kurt, carefully shading the curtains by positioning the stops in the gradients to match the curves in the paths.

[image: scpg 0915]
Figure 9-15. A curtain-draped stage, built from SVG gradients

The image is made up of three distinct layers.

At the back, covering the full width, is the stage, which is simply a rectangle the width of the graphic starting about 350 units from the top, with multiple gradient overlays on it to create the appearance of a spotlight on a brown wooden floor. The lip of the stage is actually part of one of the gradients, and illustrates how you can use such gradients to “draw” hard boundaries. The light, in turn, is mostly transparent, with the opacity increasing toward the center and the focal point offset to create the effect of a spotlight hitting the stage at an angle. This is a soft spotlight, where the edges are not clearly delineated but instead appear to spill over into the surrounding darkness.

The next layer consists of the left and right side curtains, which use the same core path shape and a reasonably complex red/maroon pattern that corresponds to highlights and shadows in the folds themselves. The right curtain is the same as the left curtain, but flipped and translated to align with the right side of the screen. Each side curtain has a shadow curtain behind it, created from the same path but displaced slightly, and with an opacity of 50%.

Finally, the top curtain overlays the other curtains, and like the side curtains features a very elaborate linear gradient with 40 stops, determined primarily by trial and error. It also has an offset shadow.

The complete code for the image is presented as Example 9-8.

Example 9-8. Using complex and layered gradients to create a stage

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="100%" height="100%" viewBox="0 0 1000 650"
 id="curtains" > [image: 1]
 <title xml:lang="en">Stage Curtains</title>
 <style type="text/css">
 .curtain-shadow {
 fill: black;
 fill-opacity: 0.5; [image: 2]
 }
 .side-curtain {
 fill: url(#side-curtain-gradient);
 }
 .ceiling-curtain {
 fill: url(#ceiling-curtain-gradient);
 }
 </style>
 <defs> [image: 3]
 <path id="curtain" transform="scale(0.55)"
 d="m 0.319,0 0.252,1000 c 0,0 -2.761,40 44.129,30
46.9,-10 38.6,-20 46.9,-10 8.3,0 27.4,10 47.4,0 19,-21 63,10 63,10
0,0 11,10 44,0 33,-10 58,0 58,0 0,0 19,40 52,20 33,-30 34,-30
34,-30 L 390,-0.53 z"/>
 <path id="ceiling-curtain" transform="scale(1,0.5)"
 d="m 0,0 1000,0 0,180 c 0,0 -26,17 -49,9 -22,-9
-48,-32 -57,-18 -8,15 -31,3 -54,-5 -23,-9 -20,45 -49,23 -28,-23
-11,11 -34,0 -23,-12 -23,-32 -46,-18 -22,15 -17,-8 -37,-8 -20,0
-25,23 -54,11 -29,-11 -43,-25 -49,-3 -5,23 -5,23 -28,0 -23,-22
-46,6 -46,6 0,0 -28,12 -43,-3 -14,-14 -54,-8 -54,6 0,14 -23,20
-31,3 -9,-17 8,26 -29,8 -37,-17 -11,-34 -40,-17 -29,17 -49,-3
-63,-5 -14,-3 -14,37 -28,25 -15,-11 -9,-14 -32,-17 -23,-3 -28,37
-46,23 C 114,186 120,157 106,169 91.4,180 85.7,214 74.3,203
62.9,191 60,171 48.6,177 37.1,183 25.7,203 25.7,203 L 2.86,177
C 0,171 0,0 0,0 z"/>
 <linearGradient id="side-curtain-gradient"> [image: 4]
 <stop stop-color="#800000" offset="0"/>
 <stop stop-color="#c00000" offset="0.08"/>
 <stop stop-color="#e00000" offset=".15"/>
 <stop stop-color="#800000" offset="0.24"/>
 <stop stop-color="#400000" offset="0.26"/>
 <stop stop-color="#600000" offset="0.28"/>
 <stop stop-color="#800000" offset="0.30"/>
 <stop stop-color="#c00000" offset="0.33"/>
 <stop stop-color="#800000" offset="0.41"/>
 <stop stop-color="#c00000" offset="0.56"/>
 <stop stop-color="#800000" offset="0.75"/>
 <stop stop-color="#400000" offset="0.82"/>
 <stop stop-color="#800000" offset="0.89"/>
 <stop stop-color="#C00000" offset="0.94"/>
 <stop stop-color="#800000" offset="1"/>
 </linearGradient>
 <linearGradient id="ceiling-curtain-gradient">
 <stop stop-color="#400000" offset="0"/>
 <stop stop-color="#700000" offset="0.013"/>
 <stop stop-color="#800000" offset="0.013"/>
 <stop stop-color="#C00000" offset="0.03"/>
 <stop stop-color="#D00000" offset="0.04"/>
 <stop stop-color="#C00000" offset="0.05"/>
 <stop stop-color="#600000" offset="0.065"/>
 <stop stop-color="#B00000" offset="0.078"/>
 <stop stop-color="#D00000" offset="0.09"/>
 <stop stop-color="#800000" offset="0.12"/>
 <stop stop-color="#A00000" offset="0.135"/>
 <stop stop-color="#D00000" offset="0.145"/>
 <stop stop-color="#C00000" offset="0.16"/>
 <stop stop-color="#600000" offset="0.19"/>
 <stop stop-color="#D00000" offset="0.21"/>
 <stop stop-color="#800000" offset="0.24"/>
 <stop stop-color="#C00000" offset="0.28"/>
 <stop stop-color="#600000" offset="0.32"/>
 <stop stop-color="#800000" offset="0.33"/>
 <stop stop-color="#C00000" offset="0.34"/>
 <stop stop-color="#800000" offset="0.37"/>
 <stop stop-color="#D00000" offset="0.39"/>
 <stop stop-color="#800000" offset="0.42"/>
 <stop stop-color="#E00000" offset="0.46"/>
 <stop stop-color="#A00000" offset="0.51"/>
 <stop stop-color="#D00000" offset="0.55"/>
 <stop stop-color="#800000" offset="0.57"/>
 <stop stop-color="#D00000" offset="0.61"/>
 <stop stop-color="#800000" offset="0.67"/>
 <stop stop-color="#D00000" offset="0.69"/>
 <stop stop-color="#800000" offset="0.71"/>
 <stop stop-color="#C00000" offset="0.74"/>
 <stop stop-color="#D00000" offset="0.76"/>
 <stop stop-color="#800000" offset="0.78"/>
 <stop stop-color="#C00000" offset="0.80"/>
 <stop stop-color="#E00000" offset="0.83"/>
 <stop stop-color="#800000" offset="0.86"/>
 <stop stop-color="#C00000" offset="0.88"/>
 <stop stop-color="#E00000" offset="0.91"/>
 <stop stop-color="#800000" offset="0.94"/>
 <stop stop-color="#C00000" offset="1"/>
 </linearGradient>
 <linearGradient id="stageGradient" x2="0" y2="1"> [image: 5]
 <stop stop-color="#100800" offset="0"/>
 <stop stop-color="saddleBrown" offset="0.97"/>
 <stop stop-color="#A06020" offset="0.97"/>
 <stop stop-color="saddleBrown" offset="1"/>
 </linearGradient>
 <linearGradient id="shadowGradient" x2="0" y2="1"> [image: 6]
 <stop stop-opacity="0.6" offset="0" />
 <stop stop-opacity="0" offset="0.97"/>
 </linearGradient>
 <radialGradient id="spotlightGradient" cy="0.9" fy="0.6">
 <stop stop-color="#FFFFFF" offset="0"
 stop-opacity="0.4"/>
 <stop stop-color="#FFFFFF" offset="0.35"
 stop-opacity="0.1"/>
 <stop stop-color="#000000" offset="1"
 stop-opacity="0"/> [image: 7]
 </radialGradient>

 <rect id="stage" width="1000" height="330" y="260" />
 </defs>

 <rect id="background" width="100%" height="100%"
 fill="black"/>

 <g id="stage-illuminated"> [image: 8]
 <use xlink:href="#stage" fill="url(#stageGradient)"/>
 <use xlink:href="#stage" fill="url(#shadowGradient)"/>
 <use xlink:href="#stage" fill="url(#spotlightGradient)"/>
 </g>

 <g id="side-curtain-left" > [image: 9]
 <use xlink:href="#curtain" class="curtain-shadow"
 x="-1" y="3"/>
 <use xlink:href="#curtain" class="side-curtain"/>
 </g>
 <g id="side-curtain-right"
 transform="translate(1000,0) scale(-1,1)"> [image: 10]
 <use xlink:href="#side-curtain-left"/>
 </g>
 <g id="ceiling-curtain"> [image: 11]
 <use xlink:href="#ceiling-curtain" class="curtain-shadow"
 x="5" y="5" />
 <use xlink:href="#ceiling-curtain"
 class="ceiling-curtain"/>
 </g>
</svg>

	[image: 1]

	An id on the <svg> element makes the entire scene available for reuse within another graphic (although you would have to import the markup into the other file to get all the styles to work correctly in web browsers).

	[image: 2]

	The fill values for the curtains are set using CSS rules. In particular, the shadows for the curtains are created simply by substituting the gradient fills with half-transparent black.

	[image: 3]

	There are two complex path elements, one for the side curtains and one for the fringe across the ceiling. Neither has any styling attributes set directly; they will be styled when they are duplicated with <use> elements.

	[image: 4]

	The first two <linearGradient> objects for the curtains have been carefully designed to match the corresponding <path> elements. Many SVG graphics editors have visual tools that can make this easier, although some fussing is inevitable.

	[image: 5]

	The remaining gradients are used for the stage; the first one fills in the color of the wood from top to bottom, including a sharp transition near the bottom to draw the edge of the stage.

	[image: 6]

	The shadowGradient uses the default black stop-color, adjusting stop-opacity instead to create an extra layer of dark shading from the back to front of the stage (top to bottom of the rectangle). Applying this as a separate layer makes it easier to later adjust the brightness separately from the color hue.

	[image: 7]

	The <radialGradient> that creates the spotlight will also be layered on top of the stage, so it also makes use of the stop-opacity property to allow the other layers to show through.

	[image: 8]

	After drawing a solid black backdrop, the stage is drawn using the same rectangle three times, to layer together the three different gradients. This is, of course, a perfect example of why layered fills are an eagerly anticipated feature of SVG 2—they would allow the stage to be drawn as a single shape filled with all three gradients stacked together.

	[image: 9]

	The left curtain is drawn by layering two versions of the curtain shape together, one with the shadow styles and one with the main curtain styles.

	[image: 10]

	The right curtain is drawn by duplicating and transforming the left curtain.

	[image: 11]

	Finally, the ceiling curtain is drawn using the same layered approach.

Although Example 9-8 contains a lot of code compared to most of the examples in the book, it is still relatively small for an image file: 7KB as editable text, 1.4KB when compressed with gzip. In comparison, a PNG version of the same image, large enough to fill most desktop displays, is over 80KB in size.

Mesh Gradients for Flexible Color Transitions

Although the stage-and-curtains example is elegant, it is also conveniently well suited for SVG gradients. The folds of hanging curtains are nicely parallel and so can be effectively matched to a linear gradient. In general, this is not always true. The colors and shadows of objects transition in all sorts of directions, not only as parallel lines or ellipses. Currently, to re-create any sort of complex shading pattern, you must layer together many different partially transparent gradients.

SVG 2 introduces a means of describing complex two-dimensional color transitions, using what are known as mesh gradients. The mesh is a grid of intersecting paths that may be straight or curved. Gradient color stops are then assigned to the intersection points of these paths, and the colors in each patch of the gradient (a region bound by four curves) is interpolated from them. Although mesh gradients are probably not something you would be coding by hand, Adobe Illustrator and Inkscape already support the creation of gradient meshes, and the SVG proposal is designed to be compatible.

Mesh gradients are too complex to be a likely candidate for CSS gradient functions. However, the CSS Image Values and Replaced Content Module Level 4 introduces a more manageable new gradient function, conic-gradient(), and its variant, repeating-conic-gradient().

A conic gradient is one in which colors change as you move in a circle around a center point; each color is then extended as far as required along a straight line radiating out from the center point. This is in contrast to a radial gradient, in which the colors change as they radiate away from the focal point, and stay the same in each concentric circle. The stops in a conic gradient are defined not by a fixed distance, but by a fixed angle.

The proposed CSS syntax would use the at keyword to optionally describe the position of the center point (by default, the center of the image) using the same syntax as for radial gradients. The list of stops would then follow, with offsets described either using angle units or as percentages of the full circle. The zero-angle would be the vertical line pointing up from the center point. Angles outside of the range 0°–360° would be cropped off. As with the other CSS gradients, color stops without specified offsets would be distributed evenly.

Some valid conic gradient syntaxes include:

/* a hue color wheel */
conic-gradient(red,yellow,lime,cyan,blue,magenta,red);

/* oscillating orange rays */
repeating-conic-gradient(at top left,
 tomato, gold 10deg);

/* checkerboard */
conic-gradient(black 0 25%, white 25% 50%,
 black 50% 75%, white 75% 100%);

The final example makes use of another shorthand introduced by the Level 4 specification, which will apply to all CSS gradient functions. When a gradient includes a region of solid color, instead of having to define two consecutive stops with the same color value, you could instead list two offsets for a single color value.

Conic gradients are not directly supported in any browsers at the time of writing. Lea Verou, a member of the CSS working group, has created a JavaScript polyfill that uses HTML canvas to convert conic-gradient declarations into static images.

Because CSS gradient functions will be directly usable in SVG 2, there are currently no plans to create dedicated SVG conic-gradient elements. However, the same effect (or a close approximation, anyway) could also be created using the mesh gradient structure.

Chapter 11. Picture-Perfect Patterns

The word pattern evokes the repeating designs we explored in Chapter 10. However, the SVG <pattern> element is more flexible than this. By defining a pattern tile that fits the object bounding box, you can create a pattern that fills the entire shape without repeating.

Why would you want to do that? One reason is to be able to layer together multiple paint servers. Another is to fill a shape with an image, similar to a CSS background image.

As we have already mentioned briefly, SVG 2 will allow you to layer multiple paint servers in a single fill declaration, and use an image as a fill value directly, making these types of pattern redundant. Until those features are available, however, these techniques are essential to create many effects.

This chapter also examines the use of the viewBox and preserveAspectRatio attributes on the <pattern> element. These attributes are particularly important with full-image fills, but they can also be used with repeated patterns.

The Layered Look

In Example 9-8 at the end of Chapter 9, we created the effect of a spotlight on a stage by drawing three separate rectangles, each filled with a different gradient. This approach is fine for a single shape, but isn’t very useful if you want to use the same layering effect on multiple shapes. That’s where patterns come in. A pattern can contain all the layers, turning them into a single paint server for use by other shapes.

Example 11-1 uses three gradients combined in a <pattern> to make a circle and an ellipse appear as unevenly lit colored globes. The same pattern is also used to fill a text heading, as shown in Figure 11-1.

[image: scpg 1101]
Figure 11-1. Shapes and text filled with a layered gradient pattern

Example 11-1. Layering gradients using a non-repeating pattern

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="6.5in" viewBox="0 0 400 650">
 <title xml:lang="en">Multiple gradients</title>
 <defs>
 <linearGradient id="red-blue" y2="1"> [image: 1]
 <stop stop-color="red" offset="0"/>
 <stop stop-color="blue" offset="1"/>
 </linearGradient>
 <linearGradient id="yellow-violet" y1="1" y2="0"> [image: 2]
 <stop stop-color="yellow"
 stop-opacity="0.9" offset="0.1"/>
 <stop stop-color="darkMagenta"
 stop-opacity="0" offset="0.5"/> [image: 3]
 <stop stop-color="violet"
 stop-opacity="0.9" offset="0.9"/>
 </linearGradient>
 <radialGradient id="flare" fx="0.2" fy="0.2"
 stop-color="white" > [image: 4]
 <stop stop-color="inherit"
 stop-opacity="0" offset="0.75"/>
 <stop stop-color="inherit"
 stop-opacity="0.05" offset="0.85"/>
 <stop stop-color="inherit"
 stop-opacity="0.2" offset="1"/>
 </radialGradient>
 <pattern id="gradient-pattern" width="1" height="1"
 patternContentUnits="objectBoundingBox" > [image: 5]
 <rect width="1" height="1" fill="url(#red-blue)"/>
 <rect width="1" height="1" fill="url(#yellow-violet)"/>
 <rect width="1" height="1" fill="url(#flare)"/> [image: 6]
 </pattern>
 </defs>
 <g fill="url(#gradient-pattern)"> [image: 7]
 <circle cx="200" cy="180" r="180" />
 <ellipse cx="110" cy="500" rx="110" ry="145" />
 <text x="400" y="525" text-anchor="end"
 font-size="100px" font-family="serif"
 stroke="indigo">Layers</text>
 </g>
</svg>

	[image: 1]

	The red-blue gradient stretches from the top left to bottom right (remember, x2 is 100% by default) of the bounding box. It uses solid colors and will be at the bottom of the layers.

	[image: 2]

	The yellow-violet gradient stretches from the bottom left to the top right of the bounding box.

	[image: 3]

	This gradient is partially transparent, transitioning to complete transparency (stop-opacity="0") at the mid point, to allow the other layer to show through. The transparent stop still needs a stop-color, otherwise it will default to black and the colors on either side will be given a dark gray tint.

	[image: 4]

	The white radial gradient is mostly transparent, only transitioning to 20% opacity at the very edges. To make it easy to edit or animate, the single color is specified on the gradient element and then explicitly inherited by each stop. Unfortunately, stop-color does not inherit by default.

	[image: 5]

	The <pattern> uses objectBoundingBox units for both the pattern tile (by default) and the content (explicitly). The tile width and height set it to fill the entire box without repeating.

	[image: 6]

	The gradient layers are drawn by filling <rect> elements, which are also scaled to fill the entire bounding box, 1 unit each for width and height.

	[image: 7]

	The layered pattern is assigned to fill the shapes and text by setting the fill presentation attribute on a group. However, each element inherits the fill property independently, and uses its own bounding box to define the gradient layers.

The pattern—and component gradients—in Figure 11-1 stretches to fit each shape (or text element) according to the object bounding box dimensions. For abstract gradients, that isn’t a problem. For other pattern contents, the distortion is unacceptable.

One option to avoid distortion would be to use userSpaceOnUse units for the pattern contents. However, the pattern will no longer scale to fit the shape. Furthermore, the positioning of the coordinates are relative to the overall space for the graphic, not the object itself. If you move the object so that its coordinates change, the pattern will remain fixed relative to the background.

You could address the positioning problem by always defining your shapes relative to a fixed point in the coordinate system, and then moving them into place with transformations or the x and y attributes on a <use> element (which have the same effect as a translation). To address the scaling problem, however, you would have to use <symbol> elements or nested SVGs to create a separate coordinate system for each shape, in which it fills the entire width or height. Of course, this all sounds like a lot of extra work and complication.

Luckily, there is one more option for scaling the contents of a <pattern>: define a viewBox and use preserveAspectRatio to ensure that it is not distorted.

Preserved Patterns

You cannot work with SVG—particularly on the Web—without running into the viewBox attribute. On your root <svg> element, it establishes the basic coordinate system and aspect ratio, allowing your graphics to scale to fit any region you set for them. It can also be used on nested <svg> elements and for reused symbols to create local scaling effects.

The viewBox is specified with four numbers: the first two specify the (x,y) coordinate of the minimum point you want to include in the graphic, while the third and fourth number specify the number of units to include in the width and height, respectively. Usually, either the first two numbers are zero (so the origin is in the top left corner and all coordinates in the graphic are positive) or they are negative values designed to position the origin in the center of the graphic.

The preserveAspectRatio attribute is easier to overlook, simply because the default value is often all you need. It sets one of three scaling modes:

	
meet to scale down your entire viewBox region to just fit in (meet the edges of) the available space without distortion

	
slice to scale up the viewBox to cover the available space (slicing off the extra)

	
none to stretch or squish the viewBox as required to exactly fill the available space in both directions.

For the meet and slice options, you must also specify an alignment value of the form xMinYMax that controls which point in the viewBox region is aligned with the equivalent point in the drawing rectangle.

On a <pattern> element, a viewBox attribute overrides the patternContentUnits setting and creates your own coordinate system for the pattern. The coordinate system created by the viewBox will scale to fit the pattern tile, respecting any preserveAspectRatio attribute value.

Warning

In Firefox versions prior to 40 (which was released in mid-2015), the viewBox and any preserveAspectRatio values are applied after converting to object bounding box units (regardless of the patternContentUnits value). This results in a distorted pattern for non-square bounding boxes, even if the pattern’s aspect ratio perfectly matches the shape.

Because a meet option for preserving aspect ratio scales the content down to fit the entire width and height in the available space, this can leave blank space around the pattern contents. This includes the default xMidYMid meet value that applies when a viewBox is specified but not preserveAspectRatio.

One option is to intentionally draw a backdrop element, within your pattern, that is much larger than the viewBox. This backdrop will be clipped to the pattern tile, while the viewBox is scaled to fit. This is used in Example 11-2 to create a padded circular gradient that maintains its circular shape, regardless of the aspect ratio of the shape it fills. The gradient’s shape is maintained by drawing it within a square shape (a circle could also be used). That square fills the entire viewBox, but the viewBox will not always fill the entire pattern tile.

Figure 11-2 shows the resulting gradient pattern, filling an oblong rectangle.

[image: scpg 1102]
Figure 11-2. A circular gradient in a rectangular box, via a fixed-aspect-ratio pattern

Example 11-2. Creating an always-circular gradient using a fixed-aspect-ratio pattern

<svg xmlns="http://www.w3.org/2000/svg"
 width="100%" height="100%"> [image: 1]
 <title xml:lang="en">Always-Circular Gradient</title>
 <defs>
 <radialGradient id="radial"> [image: 2]
 <stop stop-color="lightYellow" offset="0"/>
 <stop stop-color="yellow" offset="0.2"/>
 <stop stop-color="gold" offset="0.8"/>
 <stop stop-color="orangeRed" offset="1"/>
 </radialGradient>
 <pattern id="circular-gradient" width="1" height="1"
 viewBox="0 0 1 1"> [image: 3]
 <rect width="5" height="5" x="-2" y="-2"
 fill="orangeRed"/> [image: 4]
 <rect width="1" height="1"
 fill="url(#radial)"/> [image: 5]
 </pattern>
 </defs>
 <rect height="100%" width="100%" fill="url(#circular-gradient)"/>
</svg>

	[image: 1]

	The SVG (and the rectangle it contains) scale to 100% of the available space, so you can test different aspect ratios by re-scaling the browser window.

	[image: 2]

	The radial gradient uses default values for positioning and sizing, so it will be centered in the shape in which it is drawn and scale to fit the bounding box.

	[image: 3]

	The pattern also fills the entire bounding box (width and height of 1, with the default patternUnits setting). The viewBox defines the content units, creating an explicit 1:1 aspect ratio, regardless of bounding box dimensions.

	[image: 4]

	A backdrop rectangle is drawn five times the size of the square created by the viewBox, centered around it. The backdrop is filled with the same color as the last (padded) gradient stop.

	[image: 5]

	The gradient itself is drawn within a square that just fits to the width and height defined by the viewBox.

An important thing to note is that the shapes within the pattern are specified in the scaled user units, not in percentages. Although the viewBox creates both a new coordinate system origin and a new scale, it does not create a new viewport for the purposes of defining percentage lengths. Within a pattern, percentage lengths are scaled proportional to the change in scale of individual units, regardless of any viewBox values.

Tip

As mentioned for object bounding box units, this is not generally useful or predictable, and percentages should be avoided except for userSpaceOnUse patterns.

The use of a viewBox instead of object bounding box units also removes the codependency between the pattern tile scale and the pattern content scale. A viewBox on a pattern is always scaled to fit each individual pattern tile, not the bounding box as a whole. Figure 11-3 shows how the pattern appears after scaling down each pattern tile to 10% of the box width and 25% of its height, using the following attributes:

<pattern id="circular-gradient" width="0.1" height="0.25"
 viewBox="0 0 1 1">

The width and height used for the <rect> elements in the pattern contents have not changed at all.

[image: scpg 1103]
Figure 11-3. A repeating circular gradient pattern

The oversized-backdrop approach used in Example 11-2 is not ideal. If the aspect ratio of the pattern tile is more extreme than 5:1, the backdrop will not be big enough to fill it. If it’s more important to have the entire tile covered by your pattern than to have your entire pattern content visible, you can use a slice value for preserveAspectRatio. This ensures that the pattern contents always completely cover the tile.

Background Images, SVG-Style

When a slice approach to preserving aspect ratio is combined with a single-tile bounding box pattern, the net effect is very similar to a CSS background images set to background-size: cover. A single graphic fills the entire shape.

Example 11-3 uses a pattern to contain a fanciful SVG graphic of a sunny sky graphic, such as might be used for a backdrop in a slide or poster. The slice effect is demonstrated by using the pattern to fill a series of rectangles of different aspect ratios, with the results shown in Figure 11-4.

[image: scpg 1104]
Figure 11-4. Rectangles of different aspect ratios, and text, filled with the same graphic backdrop

Example 11-3. Reusing an SVG graphic as a non-repeating image fill

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="6.5in" viewBox="0 0 400 650">
 <title xml:lang="en">Sliced Image Pattern</title>
 <defs>
 <linearGradient id="sky" x2="0" y2="1"> [image: 1]
 <stop stop-color="lightSkyBlue" offset="0"/>
 <stop stop-color="deepSkyBlue" offset="1"/>
 </linearGradient>
 <radialGradient id="sunlight" cx="0" cy="0" >
 <stop stop-color="yellow"
 stop-opacity="0.9" offset="0.2"/>
 <stop stop-color="lightYellow"
 stop-opacity="0" offset="1"/>
 </radialGradient>
 <radialGradient id="cloud" fx="0.5" fy="0.15" r="0.6">
 <stop stop-color="oldLace" offset="0.75"/>
 <stop stop-color="lightGray" offset="0.9"/>
 <stop stop-color="darkGray" offset="1"/>
 </radialGradient>
 <pattern id="sky-pattern" width="1" height="1"
 viewBox="0 0 100 50"
 preserveAspectRatio="xMinYMin slice" > [image: 2]
 <rect width="100" height="50" fill="url(#sky)"/>
 <g fill="url(#cloud)"> [image: 3]
 <g>
 <circle cx="10" cy="42" r="5" />
 <circle cx="6" cy="42" r="3" />
 <circle cx="16" cy="43" r="3" />
 <circle cx="14" cy="41" r="4" />
 </g>
 <g>
 <circle cx="20" cy="22" r="7" />
 <circle cx="50" cy="22" r="10" />
 <circle cx="40" cy="18" r="7" />
 <circle cx="45" cy="25" r="9" />
 <circle cx="30" cy="25" r="12" />
 </g>
 <g>
 <circle cx="72" cy="39" r="5" />
 <circle cx="77" cy="40" r="3" />
 <circle cx="83" cy="41" r="4" />
 <circle cx="80" cy="36" r="5" />
 <circle cx="76" cy="35" r="3" />
 <circle cx="86" cy="39" r="3" />
 </g>
 </g>
 <rect width="50" height="50" fill="url(#sunlight)"/>
 </pattern>
 </defs>
 <g fill="url(#sky-pattern)"> [image: 4]
 <rect width="400" height="175" />
 <text x="200" y="280" textLength="390"
 text-anchor="middle" font-family="sans-serif"
 font-size="124px" font-weight="bold"
 stroke-width="2" stroke="deepSkyBlue"
 >Clouds</text>
 <rect y="290" width="250" height="250" />
 <rect x="270" y="290"
 width="130" height="250" />
 <rect x="0" y="550"
 width="400" height="100" />
 </g>
</svg>

	[image: 1]

	The code includes a number of gradient definitions that will be used by the graphics within the pattern.

	[image: 2]

	The pattern itself has a 2:1 (100×50) aspect ratio defined in its viewBox. No patternUnits or patternContentUnits attribute are required: the patternUnits are the default, and the width and height fill the entire bounding box. Again, content units are not required, as they are replaced by the viewBox. Finally, the preserveAspectRatio sets the slice scale and the alignment.

	[image: 3]

	The pattern contents consists of a rectangle filled with a blue gradient, a collection of gradient-filled circles to create the clouds, and finally another rectangle filled with the gold-to-transparent radial gradient for the sun.

	[image: 4]

	The <rect> elements and text that actually draw the graphic inherit the fill setting from a group. As usual, the bounding box for each fill layer is calculated per element, not for the group.

The pattern uses an xMinYMin alignment option, in addition to the slice scaling mode, so that the top left corner of the graphic is always included within the bounding box—although not necessarily within the shape itself, as demonstrated when the fill is used for the text.

Filling SVG Shapes and Text with Image Files

As mentioned briefly in Chapter 6, SVG 2 will allow CSS image types to be used directly as fill values for SVG shapes and text. This includes the CSS gradient functions, but also URL references to separate image files, whether those files are SVG or raster.

For example, you could create a separate graphic file with your reused backdrop, and apply it to your shapes with a rule like:

.slide {
 fill: url(clouds.svg);
}

The exact syntax for declaring the size and position of each fill layer has not been finalized at the time of writing, but will likely be similar to the syntax used for CSS background images.

Although you cannot yet use a separate image file instead of an SVG paint server, you can use an image file within a paint server, using the SVG <image> element.

Example 11-4 creates a pattern out of a photographic image (a composite image of the Earth from space by NASA). The image is scaled up to fill the pattern tile, with the extra sliced off. Figure 11-5 shows the result.

Example 11-4. Filling text with a photographic image inside a pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400" height="250" viewBox="0 0 800 500">
 <title xml:lang="en">Earth in Space</title>
 <style type="text/css">
 .earth {
 font-family: sans-serif;
 font-weight: bold;
 font-size: 148pt;

 text-anchor: middle;
 fill: url('#photoFill');
 stroke: #205334;
 stroke-width: 3;
 text-decoration: overline underline;
 text-shadow: white 0 0 8px ; [image: 1]
 }
 .background {
 fill: url(#background);
 }
 </style>
 <defs>
 <pattern id="photoFill" width="1" height="1"
 viewBox="0 0 1 1"
 preserveAspectRatio="xMidYMid slice"> [image: 2]
 <image x="-0.1" y="-0.1" width="1.2" height="1.2"
 xlink:href="globe_west_1024.jpg" /> [image: 3]
 </pattern>
 <linearGradient id="background"
 gradientTransform="rotate(90)"> [image: 4]
 <stop stop-color="black" offset="0"/>
 <stop stop-color="black" offset="0.5"/>
 <stop stop-color="navy" offset="0.80"/>
 <stop stop-color="blue" offset="0.9"/>
 <stop stop-color="lightBlue" offset="0.95"/>
 <stop stop-color="green" offset="0.95"/>
 <stop stop-color="brown" offset="1.2"/>
 </linearGradient>
 </defs>

 <rect width="100%" height="100%" class="background"/>
 <text class="earth" x="400" y="60%">EARTH</text> [image: 5]

 <metadata> [image: 6]
Image Source: http://visibleearth.nasa.gov/view.php?id=57723
 </metadata>
</svg>

	[image: 1]

	Both the font-styles and the SVG styles are set using a CSS class. A text-shadow adds a slight glow around the letters in browsers that support this property, while paired underline and overline decorations add a border effect.

	[image: 2]

	The height and width attributes create a single pattern tile that fits the bounding box. The viewBox creates a square aspect ratio that will expand to cover the tile, with excess sliced off according to preserveAspectRatio.

	[image: 3]

	The image itself is drawn slightly larger than the viewBox, so that the black space around the globe will not be included.

	[image: 4]

	A <linearGradient> provides a horizon-like backdrop effect.

	[image: 5]

	The text is positioned in the middle of the SVG viewBox, with the size, font, and text-anchor set by the CSS class.

	[image: 6]

	The <metadata> element holds extra information about the file that is neither part of the image nor its alternative text.

The example demonstrates how text-decoration marks (underlines, overlines, and strike-throughs) are treated as an intrinsic part of the text content, and are both filled and stroked with the same styles as the letters. An extra text-specific painting effect is added with text-shadow to improve contrast around the letters.

[image: scpg 1105]
Figure 11-5. Image-filled text using a sliced pattern

Warning

Although most browsers support text-shadow for text laid out with CSS, Internet Explorer does not support it for SVG, nor do many other tools based on the SVG 1.1 specifications. Even web browsers that do support it can be buggy: Chrome does not scale shadows when text is scaled; Firefox does not draw the shadow if the text uses paint servers to fill the text; and Safari creates a shadow around each em-box instead of following the shapes of the letters when using paint servers.

In other words, use text-shadow for non-essential decoration only. If you do use it, it must be specified using CSS, not as a presentation attribute.

The source image used in Example 11-4 is shown in Figure 11-6 for comparison. It is square, exactly matching the aspect ratio created by the height and width attributes on the <image> element. If it did not match, by default it would scale down to fit, ruining the slice effect on the pattern. For a different image, you would need to change the image elements dimensions and also the aspect ratio in the viewBox so that the image would still fill it completely.

[image: scpg 1106]
Figure 11-6. The image used to fill the SVG text (photo by NASA Goddard Space Flight Center/Reto Stöckli with enhancements by Robert Simmon)

Tip

If you do not know the aspect ratio of the photograph you’re going to use, you can specify a slice value for preserveAspectRatio on the <image> element itself. The two slice settings might slice off more than really necessary, but that’s better than having empty space show through!

You could describe the effect from Example 11-4 as clipping the image to text. You can, in fact, create a very similar effect (minus the strokes and shadow), by including the text inside a <clipPath> element and referencing it in the clip-path property of an <image> element. In that case, however, the <image> would be the element on the screen, and the text would be a graphical effect. By using an image fill to a <text> element, the text remains selectable and accessible.

Painting Text Decorations

The CSS Text Decoration Module Level 3 extends the text-decoration property, making it a shorthand for a series of subproperties. The extended syntax not only allows you to set the type of line (under, over, or through) but also its color and its style, such as dashed or wavy lines.

Most of the new options will apply to SVG, but the color option is complicated by the fact that SVG text has fill and stroke paint, not a single text color. As a result, SVG 2 introduces coordinating text-decoration-fill and text-decoration-stroke properties.

Browsers have started to implement support for the new text decoration options. However, at the time of writing, none have implemented the SVG-specific control over fill and stroke paint.

The text-shadow effect used in Example 11-4 was initially proposed for CSS 2, but did not make it to the final specification; it is now included in the draft CSS Text Decoration Module Level 3. At the time of writing, it has not officially been adopted into SVG as a presentation attribute.

Appendix B. Elements, Attributes, and Style Properties

This guide to SVG paint server elements provides a quick reference to the available attributes, with their default and allowed values.

<linearGradient>

A gradient in which color stops are drawn as parallel lines, extending perpendicularly (in the gradient’s coordinate system) from a gradient vector.

	id

	
the value used to reference this gradient

	
same restrictions as for any other element id

	x1

	
horizontal position of the gradient vector’s start point

	
a length (in user coordinates or with units) or percentage (of coordinate system width)

	
default 0.

	y1

	
vertical position of the gradient vector’s start point

	
a length (in user coordinates or with units) or percentage (of coordinate system height)

	
default 0.

	x2

	
horizontal position of the gradient vector’s end point

	
a length (in user coordinates or with units) or percentage (of coordinate system width)

	
default 100%.

	y2

	
vertical position of the gradient vector’s end point

	
a length (in user coordinates or with units) or percentage (of coordinate system height)

	
default 0.

	gradientUnits

	
the coordinate system to use

	
either userSpaceOnUse or objectBoundingBox

	
default objectBoundingBox

	gradientTransform

	
transformations to apply to the gradient content, independent of the shape it fills

	
a list of whitespace-separated transformation functions: translate(tx,ty), scale(s), scale(sx,sy), rotate(a), rotate(a,cx,cy), skewX(a), and skewY(a)

	
each transformation parameter is specified as a number without units (in the SVG 1 syntax); lengths are interpretted as user units (px), angles are interpretted as degrees

	
default is no transformation

	spreadMethod

	
the strategy to use for filling content beyond the start and end of the gradient vector

	
one of pad, reflect or repeat

	
default pad

	xlink:href

	
a reference to another gradient that should be used as a template for this one

	
a URL with a target fragment which must match the ID of a <linearGradient> or <radialGradient> element in the same document

	
all attributes on the referenced element become the default values for the current element

	
if the current element does not contain any <stop> elements, then the stops from the referenced element will be used

	
in XML documents (including SVG), the xlink prefix must be attached to the XLink namespace, http://www.w3.org/1999/xlink, using an xmlns:xlink attribute

<radialGradient>

A gradient in which color stops are drawn along rays from a starting point to an ending circle.

	id

	
the value used to reference this gradient

	
same restrictions as for any other element id

	cx

	
horizontal position of the center point

	
a length (in user coordinates or with units) or percentage (of coordinate system width)

	
default 50%

	cy

	
vertical position of the center point

	
a length (in user coordinates or with units) or percentage (of coordinate system height)

	
default 50%

	r

	
radius of the circle

	
a length (in user coordinates or with units) or percentage (proportional to the coordinate system diagonal length, such that the diagonal is always √2×100%)

	
default 50%

	
negative values are an error.

	fx

	
horizontal position of the focal point

	
a length (in user coordinates or with units) or percentage (of coordinate system width)

	
default is to match cx

	fy

	
vertical position of the focal point

	
a length (in user coordinates or with units) or percentage (of coordinate system height)

	
default is to match cy

	gradientUnits

	
the coordinate system to use

	
either userSpaceOnUse or objectBoundingBox

	
default objectBoundingBox

	gradientTransform

	
transformations to apply to the gradient content, independent of the shape it fills

	
syntax and options are the same as for <linearGradient>

	spreadMethod

	
the strategy to use for filling content beyond the ending circle

	
syntax and options are the same as for <linearGradient>

	xlink:href

	
a reference to another gradient that should be used as a template for this one

	
syntax and options are the same as <linearGradient>

<stop>

A fixed value within a gradient.

	offset

	
The distance along the gradient vector or ray at which to position this value

	
a number between 0 and 1, or a percentage

	
values will be clamped to the range [0–1] or [0%–100%]

	
stops must be listed in order of increasing offsets; if not, the offset will be adjusted to match the previous maximum value

	
no official default in SVG 1.1; default 0 in SVG 2 and in most web browsers

	stop-color (presentation attribute)

	
The color to use at this stop point

	
any valid color definition supported by the browser

	
default black

	stop-opacity (presentation attribute)

	
The alpha value to use at this stop point

	
a number between 0 and 1

	
default 1

<pattern>

A paint server that defines a region of custom SVG content that should be used to fill other elements, repeating it as necessary in a rectangular grid.

	id

	
the value used to reference this gradient

	
same restrictions as for any other element id

	x

	
horizontal offset of the top left corner of the reference pattern tile

	
a length (in user coordinates or with units) or percentage (of coordinate system width)

	
default 0

	y

	
vertical offset of the top left corner of the reference pattern tile

	
a length (in user coordinates or with units) or percentage (of coordinate system height)

	
default 0

	width

	
width of each pattern tile

	
a length (in user coordinates or with units) or percentage (of coordinate system width)

	
default 0, which disables rendering of the pattern

	
negative values are an error

	height

	
height of each pattern tile

	
a length (in user coordinates or with units) or percentage (of coordinate system height)

	
default 0, which disables rendering of the pattern

	
negative values are an error

	patternUnits

	
the coordinate system to use for x, y, width, and height

	
either userSpaceOnUse or objectBoundingBox

	
default objectBoundingBox

	patternContentUnits

	
the coordinate system to use for drawing the child content of the pattern

	
either userSpaceOnUse or objectBoundingBox

	
default userSpaceOnUse

	
has no effect if a viewBox is specified

	
a value of objectBoundingBox is implemented as a non-uniform scale to the user units; it does not create a new reference definition for percentage lengths

	viewBox

	
declaration of a custom coordinate system to use for the pattern contents

	
a list of four numbers, separated by whitespace or commas

	
the numbers represent, in order: minimum x, minimum y, width, and height

	
the width and height values must be positive

	
by default, the coordinate system is controlled by patternContentUnits

	
the viewBox is implemented as a scaling transformation, and does not create a new reference definition for percentage lengths

	preserveAspectRatio

	
the scaling and alignment strategy that should be used when the aspect ratio defined by the viewBox does not match the aspect ratio of the pattern tile

	
Either none or an alignment value followed by meet or slice

	
The alignment value is a single word of the form xMxxYMxx where Mxx is one of Min, Mid, or Max

	
default is xMidYMid meet

	
has no effect unless a viewBox attribute is specified

	patternTransform

	
transformations to apply to the pattern tiles and their content, independent of the shape it fills

	
syntax and options are the same as for the gradientTransform attribute for <linearGradient>

	
default is no transformation

	xlink:href

	
a reference to another pattern that should be used as a template for this one

	
a URL with a target fragment which must match the ID of a <pattern> element in the same document

	
all attributes on the referenced element become the default values for the current element

	
if the current element does not contain any child elements, then the pattern content from the referenced element will be used

	
in XML documents (including SVG), the xlink prefix must be attached to the XLink namespace, http://www.w3.org/1999/xlink, using an xmlns:xlink attribute

	Preface

	What We’ll Cover

	About This Book

	About the Examples

	Using Code Examples

	Conventions Used in This Book

	Safari® Books Online

	How to Contact Us

	Acknowledgments

	1. Things You Should Already Know

	SVG Is Drawing with Code

	SVG Is Always Open Source

	SVG Is XML (and Sometimes HTML)

	SVG Is Squishable

	Pictures Are a Collection of Shapes

	Images Can Have Images Inside Them

	Text Is Art

	Art Is Math

	An SVG Is a Limited View of an Infinite Canvas

	SVG Has Structure

	SVG Has Style

	Behind All Good Markup Is a Great DOM

	SVG Can Move

	SVG Can Change

	2. The Painter’s Model

	Fill ’Er Up with the fill Property

	Stroke It with the stroke Property

	Stroking the Fill and Filling the Stroke

	Take a Hint with Rendering Properties

	3. Creating Colors

	Misty Rose by Any Other Name

	A Rainbow in Three Colors

	Custom Colors

	Mixing and Matching

	4. Becoming Transparent

	See-Through Styles

	The Net Effect

	5. Serving Paint

	Paint and Wallpaper

	Identifying Your Assets

	The Solid Gradient

	6. Simple Gradients

	Gradiated Gradients

	Transparency Gradients

	Controlling the Color Transition

	7. Gradients in All Shapes and Sizes

	The Gradient Vector

	The Object Bounding Box

	Drawing Outside the Box

	Gradients, Transformed

	8. And Repeat

	How to Spread Your Gradient

	Reflections on Infinite Gradients

	Repeating Without Reflecting

	Using (and Reusing) Gradients in HTML

	9. Radial Gradients

	Radial Gradient Basics

	Filling the Box

	Scaling the Circle

	Adjusting the Focus

	Transforming Radial Gradients

	Grand Gradients

	10. Tiles and Textures

	Building a Building Block

	Stretching to Fit

	Laying Tiles

	Transformed Tiles

	11. Picture-Perfect Patterns

	The Layered Look

	Preserved Patterns

	Background Images, SVG-Style

	12. Textured Text

	Bounding Text

	Switching Styles Midstream

	13. Painting Lines

	Beyond the Edges

	The Empty Box

	Using the Coordinate Space

	Patterned Lines

	14. Motion Pictures

	Animation Options

	Coordinated Animation

	Animated Interactions

	A. Color Keywords and Syntax
	B. Elements, Attributes, and Style Properties

	<linearGradient>

	<radialGradient>

	<stop>

	<pattern>

	Index

SVG Colors, Patterns
& Gradients

Painting Vector Graphics

Amelia Bellamy-Royds

& Kurt Cagle

Chapter 6. Simple Gradients

Vector graphics are often thought of as “line drawings,” with sharp edges and consistent blocks of color. That clean, minimalist style can often be just what your design needs. But a complete graphics language should also have the option to create soft edges and color transitions. Gradients are the simplest way to create these effects in SVG.

Gradients consist of smooth transitions from one color or opacity state to another. SVG currently supports two types of gradients: linear gradients, where each color in the transition is stretched out along parallel lines, and radial gradients, where each color makes a circular shape.

This chapter introduces the basic structure of the SVG gradient elements, and the different color transitions they can create. The SVG syntax will be contrasted with the CSS syntax to create similar effects. For now, the examples will use the default orientation and scale of each gradient, and will use them to fill simple rectangles. The following chapters will explore the full flexibility of SVG gradients.

Gradiated Gradients

The single-color gradients from Example 5-1 demonstrated the bare-minimum markup for a gradient. However, they didn’t use any of the features that create a gradiated result. For that, we’ll need at least two color stops so that a color transition can be displayed.

The basic structure of a two-color linear gradient is as follows:

<linearGradient id="red-blue">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
</linearGradient>

The two <stop> elements define the colors that should be blended together to create the gradient; the result is displayed in Figure 6-1, used to fill a rectangle. Each <stop> has a new attribute, offset, that positions that color along the distance of the gradient. The offset value is expressed either as a number between 0.0 and 1.0 or as a percentage; here, the very beginning of the gradient is pure red and the very end is light blue.

[image: scpg 0601]
Figure 6-1. Gradient with two stop colors

When you have more than two color stops, the spacing between the offsets controls the rate of change in the color, as shown in Figure 6-2, which uses the following asymmetrical gradient:

<linearGradient id="red-blue-2">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="0.3"/>
 <stop stop-color="red" offset="1"/>
</linearGradient>

[image: scpg 0602]
Figure 6-2. Gradient with three stops at uneven offsets

If the first offset is greater than zero, or the last offset is less than 1, there will be blocks of solid color on either side of the gradiated section, as in the following gradient, displayed in Figure 6-3:

<linearGradient id="red-blue-3">
 <stop stop-color="red" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
</linearGradient>

[image: scpg 0603]
Figure 6-3. Gradient with two stops, offset from the edges

This is effectively what happens when you only have one <stop>, as in the solid-colored gradients (Example 5-1): the offset on both sides is filled in with the same solid color.

Tip

Offsets outside the range of 0 to 1 (or 0% to 100%) will be clamped to that interval.

The order of XML elements matters, and <stop> elements must be given in order from start to end of the gradient. If you specify an offset that is less than the offset for a previous stop, it will be adjusted to exactly match the previous maximum offset.

If consecutive stops have the same offset, you can create a sharp edge or stripe, as in the following code used to draw Figure 6-4:

<linearGradient id="red-blue-4">
 <stop stop-color="red" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
 <stop stop-color="red" offset="0.7"/>
</linearGradient>

[image: scpg 0604]
Figure 6-4. Stripes created using a gradient

Transparency Gradients

The previous examples are all fully opaque color gradients, but we mentioned that gradients can control opacity as well. One way would be to use rgba() and hsla() semitransparent color values for stop-color. However, SVG has an easier solution, which allows opacity to be manipulated independently of color.

The opacity of each gradient stop is controlled by the stop-opacity property. As with all the opacity properties, the value is a number between 0 and 1. As with stop-color, the value is not inherited by default.

Using stop-opacity, you can create a gradient with a single color transitioning from opaque to transparent, or you can transition both color and opacity, as in the following gradient:

<linearGradient id="red-blue-5">
 <stop stop-color="red" stop-opacity="0" offset="0"/>
 <stop stop-color="lightSkyBlue" stop-opacity="1" offset="1"/>
</linearGradient>

This semitransparent gradient is displayed in Figure 6-5 as a filled rectangle superimposed over top of the text “Gradients…”. On the far left, the color is pure red, but it is completely transparent. As the gradient progresses to the right, it both changes color and becomes more opaque, obscuring the text more and more.

[image: scpg 0605]
Figure 6-5. Semitransparent colored gradient

The only required attribute here is offset; stop-color automatically defaults to black and stop-opacity to 1 (100% opaque, or no transparency). We’ve been using the defaults to skip the opacity value in most of the colored gradients, but you could also skip the color, as in this gradient which transitions from transparent black to opaque black:

<linearGradient id="brightness">
 <stop offset="0" stop-opacity="0"/>
 <stop offset="1" />
</linearGradient>

This gradient is displayed in Figure 6-6, again using text drawn behind the gradient-filled rectangle to emphasize the opacity change.

[image: scpg 0606]
Figure 6-6. Single-color opacity gradient

Controlling the Color Transition

More complex gradients can be created with more stops. For instance, the following will create a rainbow gradient, cycling through fully saturated colors from magenta to blue to cyan to green, yellow, red, and back to magenta again:

<linearGradient id="rainbow">
 <stop stop-color="#F0F" offset="0"/>
 <stop stop-color="#00F" offset="0.1667"/>
 <stop stop-color="#0FF" offset="0.3333"/>
 <stop stop-color="#0F0" offset="0.5"/>
 <stop stop-color="#FF0" offset="0.6667"/>
 <stop stop-color="#F00" offset="0.8333"/>
 <stop stop-color="#F0F" offset="1"/>
</linearGradient>

The resulting rainbow is shown in Figure 6-7.

[image: scpg 0607]
Figure 6-7. Rainbow gradient using seven stops

The color stops were specifically chosen so that at least one color channel would remain maximized at all times, maintaining the fully saturated effect. The following snippet defines the exact same gradient, using HSL notation for the colors and percentages for the offsets:

<linearGradient id="rainbow">
 <stop stop-color="hsl(300, 100%, 50%)" offset="0%"/>
 <stop stop-color="hsl(240, 100%, 50%)" offset="16.67%"/>
 <stop stop-color="hsl(180, 100%, 50%)" offset="33.33%"/>
 <stop stop-color="hsl(120, 100%, 50%)" offset="50%"/>
 <stop stop-color="hsl(60, 100%, 50%)" offset="66.67%"/>
 <stop stop-color="hsl(0, 100%, 50%)" offset="83.33%"/>
 <stop stop-color="hsl(-60, 100%, 50%)" offset="100%"/>
</linearGradient>

Note

The color magenta—also known as fuchsia—is defined using both a hue of 300° (the start of the gradient) and a hue of –60° (the end of the gradient). Just as these are the same angle on a circle, they are the same hue on the color wheel.

Although the colors can be specified using HSL values, the colors are blended in straight lines through RGB color space, not by circling around the HSL color wheel. As mentioned in “Mixing and Matching”, the intermediary colors are affected by the sRGB model’s weighting of color brightness. Once adjusted to the sRGB model, each channel (red, green, and blue) is then increased or decreased independently.

If we had not specified both primary and secondary colors, the mid-point between magenta (#F0F) and cyan (#0FF) would not normally be fully saturated blue (#00F). Instead, it would be a much lighter blue, with both the red and green channels partially lit. If you were to blend pure red (#F00) with saturated blue (#00F), the result would be a dark purple—with both color channels halfway between fully lit and off—not a fully saturated magenta.

Figure 6-8 compares the deep, muddy blends generated from the primary colors with the much lighter, spring-toned gradient from the secondary colors. The complete code for the figure is presented in Example 6-1.

[image: scpg 0608]
Figure 6-8. Rainbow gradients using red, blue, and green stops (top), and using magenta, cyan, and yellow stops (bottom)

Example 6-1. Comparing two multicolored gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="2in">
 <title xml:lang="en">Dark and Light Rainbow Gradients</title>
 <linearGradient id="primary"> [image: 1]
 <stop stop-color="#F00" offset="0"/>
 <stop stop-color="#00F" offset="0.3333"/>
 <stop stop-color="#0F0" offset="0.6667"/>
 <stop stop-color="#F00" offset="1"/> [image: 2]
 </linearGradient>
 <linearGradient id="secondary">
 <stop stop-color="#F0F" offset="0"/>
 <stop stop-color="#0FF" offset="0.3333"/>
 <stop stop-color="#FF0" offset="0.6667"/>
 <stop stop-color="#F0F" offset="1"/>
 </linearGradient>
 <rect width="85.714%" height="1in" x="0" y="0"
 fill="url(#primary)" />
 <rect width="85.714%" height="1in" x="14.286%" y="1in"
 fill="url(#secondary)" /> [image: 3]
</svg>

	[image: 1]

	Although the <linearGradient> elements could be contained within a <defs> block, it is not necessary—a gradient is never drawn directly regardless.

	[image: 2]

	Each of these gradients uses three colors, but four stops, in order to cycle back to the starting color at the end.

	[image: 3]

	The two rectangles are each six-sevenths of the figure wide (85.714%), offset by one-seventh (14.286%) of the width of the figure (one-sixth of the rectangle width), in order to align the parts of the gradient with approximately the same hue. Note that the hues do not perfectly align because of the adjustments from the sRGB model; for example, halfway between magenta and cyan, the color is still slightly purplish.

As Figure 6-8 demonstrates, the markup to define paint servers can sometimes be longer than the markup to define the shapes being painted. For better organization, the reusable content is usually placed at the top of the file, and is often grouped together within a <defs> (definitions) element. Alternatively, if a gradient is only being used once, you may wish to define it immediately before the shape it will be used with.

Warning

For optimal browser support, always define your gradients earlier in the document than the elements that use them. Many versions of Safari will not correctly apply content defined later in the file.

Defining Gradients with CSS Functions

Gradients were introduced to CSS 3 with the Image Values and Replaced Content Module; the specification is a W3C candidate recommendation and CSS gradients are supported in all the latest web browsers. Support for older browsers can be extended by duplicating your style declarations with older, experimental prefixed syntax; there is no support in Internet Explorer versions prior to 10, or in the Opera Mini browser.

Although the final appearance of CSS and SVG gradients are much the same, there are fundamental differences in the way they are defined and used. In addition, there are more easy-to-overlook differences in the details, which we’ll highlight over the course of the next few chapters.

The most obvious difference is in the way they are defined: SVG gradients are created with XML markup elements, while CSS gradients are created using functional notation within a stylesheet.

A simple linear gradient is defined in CSS with the linear-gradient function, the parameters of which are a comma-separated list of color stop values. Each stop consists of the color value and then the offset value, separated by whitespace, as follows:

background: linear-gradient(red 0%, lightSkyBlue 100%);
background: linear-gradient(#F0F 0%, #0FF 33.33%,
 #FF0 66.67%, #F0F 100%);

The default direction of a CSS linear gradient is from top to bottom, in contrast to the default for SVG which is left to right. (We’ll show how you can change the orientation of both types of gradients in Chapter 7.)

If the offset values are omitted, the stops are distributed evenly from 0% to 100%. The following declarations are therefore equivalent to the previous gradients:

background: linear-gradient(red, lightSkyBlue);
background: linear-gradient(#F0F, #0FF, #FF0, #F0F);

If you specify some—but not all—of the offsets, then the unspecified values will be distributed evenly between the fixed points.

You cannot specify CSS gradient offsets using decimal numbers in place of percentages, but you can specify them using lengths with units or calc() functions. For example, the following CSS creates a background gradient that fades from black to white over the padding region and then stays plain white for the height of the element, no matter how tall that is:

padding: 1em;
background: linear-gradient(black, white 1em,
 white calc(100% - 1em), black);

You can also use offsets greater than 100% or less than zero, and the colors will be adjusted as if the visible gradient was part of a larger one.

There is no direct way to set a stop-opacity value with CSS gradients, but you can use the rgba() and hsla() color functions to define semitransparent colors.

A more subtle difference between CSS and SVG gradients is that CSS does not treat paint servers as a unique resource type; instead, CSS gradients are defined as a standalone vector image with no fixed dimensions or aspect ratio.

CSS gradient functions are therefore used in place of url() references to image files, primarily within background-image lists (or the background shorthand). They can also be used within list-style-image or border-image properties, although browser support for these properties lagged behind support for background gradients.

CSS gradients cannot currently be used to replace a paint server reference in the fill or stroke property of SVG elements, although this will almost certainly change in SVG 2.

Chapter 8. And Repeat

As we manipulated the gradient vector and the gradient transform in Chapter 7, we pointed out a few times how areas beyond the end of the gradient vector are filled in with solid color. We’ve also mentioned how this is only the default behavior.

This chapter examines the alternative: repeating gradients that continue to transition for as long as required to fill the shape. Again, there are both SVG and CSS ways of achieving this, and we’ll compare the two.

With all the features of linear gradients now introduced, the chapter concludes with some examples of one of the more common—but, unfortunately, more problematic—uses of SVG gradients: to style re-usable SVG icons within an HTML page. There are a number of web browser bugs you’ll need to avoid to get everything working as intended.

How to Spread Your Gradient

The appearance of a gradient beyond the ends of the gradient vector is set by the spreadMethod attribute on the <linearGradient> element. It controls how the gradient spreads out toward infinity.

The default value for this attribute is pad. With it, everything before the start of the vector is padded with the first stop-color, while everything beyond the end point is padded with the last stop-color. The examples we’ve seen so far have all used the padding behavior by default, but Example 8-1 does so explicitly; the x1 and x2 attributes limit the gradient to the middle 10% of the object bounding box, but the rest of the shape will be padded in blue and pink. The resulting gradient is shown in Figure 8-1.

[image: scpg 0801]
Figure 8-1. A narrow gradient padded with solid colors

Example 8-1. Using padded gradients to fill a shape

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1in">
 <title xml:lang="en">Padded Gradient</title>
 <linearGradient id="divider" spreadMethod="pad"
 x1="45%" x2="55%" > [image: 1]
 <stop stop-color="lightSteelBlue" offset="0%"/>
 <stop stop-color="darkRed" offset="50%"/>
 <stop stop-color="salmon" offset="100%"/> [image: 2]
 </linearGradient>
 <rect width="100%" height="100%" fill="url(#divider)" />
</svg>

	[image: 1]

	You don’t really need to specify spreadMethod, because pad is the default value; it is included here for emphasis.

	[image: 2]

	Note that the stop offsets are a percentage of the gradient vector length, not of the object bounding box or user space.

The other options for spreadMethod are repeat and reflect. Both of these settings cause the gradient to be repeated as many times as necessary to fill the shape.

Warning

WebKit (Safari browser and older Chrome) does not support the repeat and reflect values of spreadMethod. Firefox temporarily dropped support for repeated and reflected gradients when changing underlying code; they were reintroduced in 2014 with version 32. Where not supported, all gradients are rendered with padded colors.

If the repeated effect is essential to your graphic, you have two workarounds:

	
Manually repeat the gradient stops (and adjust the size of the gradient vector) as many times as required to fill your shape.

	
Use a <pattern> element (as described in Chapter 10) to create repeating gradient tiles.

Reflections on Infinite Gradients

The reflect method reverses the order of stops on each repeat cycle. This creates a smooth transition at the start and end points, alternating between the specified colors without any sharp discontinuities. The colors alternate in peaks and troughs.

Taking the same code from Example 8-1 and adding the spreadMethod="reflect" attribute results in Figure 8-2.

[image: scpg 0802]
Figure 8-2. A narrow gradient reflected on either side

Although the central gradient is the same as in Figure 8-1, the visual effect is quite different when that gradient region is repeated and reflected, creating an appearance of metallic tubes of alternating colors. Note that the repetitions happen in both directions, before and after the gradient vector you specify.

The effect of a reflected gradient is strongly influenced by the length of the gradient vector and the level of contrast in the colors. Example 8-2 creates a more subtle, wave-like reflected gradient, shown in Figure 8-3.

[image: scpg 0803]
Figure 8-3. A reflected three-color gradient

Example 8-2. Using reflected gradients to create a smooth repeating pattern

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1in">
 <title xml:lang="en">Reflecting Gradient</title>
 <linearGradient id="waves" spreadMethod="reflect"
 x2="10%" y2="10%">
 <stop stop-color="darkGreen" offset="0"/>
 <stop stop-color="mediumSeaGreen" offset="50%"/>
 <stop stop-color="skyBlue" offset="100%"/>
 </linearGradient>
 <rect width="100%" height="100%" fill="url(#waves)" />
</svg>

The gradient vector runs from the top left corner (default x1 and y1 values) to the point 10% along the diagonal. This is the distance for a single, uni-directional cycle of the gradient. The resulting shape therefore has five pairs (10 cycles total) of alternating gradients, green to blue and back again, along the diagonal.

Repeating Without Reflecting

Reflected gradients create smooth effects, shifting to one color and then back to the other. In contrast, when spreadMethod is repeat, the gradient stops repeat in the same order from beginning to end. Unless the start and end colors are identical, this will result in a discontinuity in the gradient.

The sharp difference can be shown by once again adapting the code from Example 8-1, to now use spreadMethod="repeat". The result is Figure 8-4.

[image: scpg 0804]
Figure 8-4. A narrow gradient repeated on either side

A “sharp” difference, indeed—the edges of each gradient cycle now create sharp lines, as if you’re looking at the creases of an accordion, each side lit differently.

Repeated gradients are useful when creating striped effects.
Example 8-3 takes advantage of them to create a striped wallpaper effect, as shown in Figure 8-5.

[image: scpg 0805]
Figure 8-5. Striped wallpaper created with a repeating gradient

Example 8-3. Using repeating gradients to create a striped pattern

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1in">
 <title xml:lang="en">Repeating Gradient</title>
 <linearGradient id="wallpaper" spreadMethod="repeat"
 gradientUnits="userSpaceOnUse"
 x1="5px" x2="45px"> [image: 1]
 <stop stop-color="indigo" offset="50%"/> [image: 2]
 <stop stop-color="deepSkyBlue" offset="50%"/>
 <stop stop-color="lightSkyBlue" offset="90%"/> [image: 3]
 </linearGradient>
 <rect width="100%" height="100%" fill="url(#wallpaper)" />
</svg>

	[image: 1]

	The gradient is sized using user-space units, so the width of each gradient cycle can be specified in absolute units instead of as a percentage of the referencing shape. The gradient vector is horizontal (y1 and y2 are left as the default 0), and each cycle will be 40px wide—the difference between the x1 and x2 values.

	[image: 2]

	The first stop is positioned halfway into the cycle (50% offset); the space between the start of each repeat cycle and the offset will continue to be padded with that first stop color. In other words, the first half of each repeat will be a solid stripe in indigo.

	[image: 3]

	After a sharp transition to blue at 50% offset, there is a subtle gradient to a lighter blue at 90% offset; the remainder of the repeat cycle will be filled in with the light blue.

Example 8-3 also demonstrates something we mentioned in Chapter 7: off-setting stops from the start or end of the gradient vector is not the same (in repeated or reflected gradients) as changing the length of the vector. The color is padded in between the <stop> and the end of the vector; the repetition applies to the vector itself.

Repeating CSS Gradients

The repeating-linear-gradient() function is used to create repeating linear gradients in CSS. The parameters are the exact same as for a regular linear gradient: a direction parameter (as keywords or an angle) followed by a list of color stops.

Warning

Repeating CSS gradients were adopted later than regular gradients in many browsers. However, they are now supported in the latest versions of all the major browsers, including Safari (which does not support repeating SVG gradients).

The repeated section exactly matches the distance between the first and last stop. To see the repeats, you need to explicitly set offsets for at least one of these stops; otherwise, a single cycle will fill up the entire CSS layout box.

To create a block of solid color in between repeats, you would need to provide two stops with the same color. For example, to create the vertical blue and indigo wallpaper stripes, the code would be as follows:

background: repeating-linear-gradient(to right,
 indigo 5px, indigo 25px,
 deepSkyBlue 25px,
 lightSkyBlue 41px, lightSkyBlue 45px);

The repeating block is still 40px wide, the difference between the first and last stop. The in-between stops have also been converted to px values. If we had used percentage values, they would be calculated relative to the CSS layout box, not the gradient repeat distance; a 50% offset would be much larger than the 45px final offset, throwing off the scale completely.

There is no shorthand to create a reflecting gradient in CSS. To create a reflected pattern, you duplicate the stops yourself to create a complete repeating block, as in the following code:

background: repeating-linear-gradient(to bottom right,
 darkGreen, mediumSeaGreen 5%,
 skyBlue 10%,
 mediumSeaGreen 15%, darkGreen 20%);

In this case, the offset of the first stop is 0 by default; the repeating pattern is therefore 20% of the length of the diagonal, the same as a back-and-forth cycle in Example 8-2.

For horizontal and vertical gradients in CSS backgrounds, you can also create repeating gradients by using background-size to define a background image just large enough for one repeat, and tiling it with the background-repeat property to fill the element.

The tiled approach approach has two conveniences compared to repeating-linear-gradient. You can use percentages for distance along the gradient, independent of the repeat size, and you do not have to explicitly include extra stops for solid colors at the start and end of the repeat. For example, you could create the wallpaper effect with the following shorthand style rule:

background: linear-gradient(to right,
 indigo 50%,
 deepSkyBlue 50%,
 lightSkyBlue 90%)
 5px 0/40px 100% repeat-x;

If you wanted to change the width or offset of the stripes, you would now only have to adjust one value (the 40px 100% background-size value for total width, or the 5px 0 background-position value for the offset), instead of having to adjust each stop offset.

With a little trigonometry, you can also repeat diagonal gradients this way, by carefully figuring out the correct background-size to create a repeating tile; however, rounding effects may create visible edges between tiles.

Using (and Reusing) Gradients in HTML

The gradient examples so far have used the gradients to fill simple shapes within an SVG file; most have simply filled a rectangle the full size of the graphic. The use case for a simple SVG gradient backdrop is dwindling, however, with widespread support for CSS gradients. At the same time, the use cases for other SVG graphics have been increasing with improved browser support. This includes inline SVG code, markup within the HTML file that is styled with the main document’s stylesheets.

Gradients can be used with icons, charts, or other SVG code within an HTML page. For the most part, it works the same as in a stand-alone SVG document, but there are a few complications, most of which can be traced to browser bugs.

For a single large SVG (e.g., a data visualization), all the SVG code, including gradient definitions, is usually included together.

For an SVG icon system, in contrast, the icons are usually defined once and then reused with <use> elements. This keeps your web page organized and allows the main inline markup to be clear and concise. In the simplest form, each icon instance can be written with only slightly more markup than an embedded image:

<svg class="icon"><use xlink:href="#star" /></svg>

Elsewhere in the same document, a <symbol> element with id="star" would define the actual graphic that will scale to fit the size you assign (in CSS) to an <svg> element of class icon.

Depending on the use, you may need to include a title tooltip, accessible name, and fallback text:

<svg class="icon" role="img" aria-labelledby="icon-0001">
 <use xlink:href="#star">
 <title>Tooltip</title>
 <desc id="icon-0001">Alternative Text</desc>
 </use>
</svg>

The <title> content will be used as a tooltip in modern browsers. The <desc> content will be used as the accessible name (because of the aria-labelledby attribute) and will also be visible in older browsers that do not support SVG.

The original graphics in each <symbol> generally have minimal style rules assigned, so that they can inherit the styles set on the <use> instances, including interactive styles such as hover or focus effects. Those styles can include fill or stroke references to a gradient element. However, as previously mentioned in Chapter 5, URL parsing rules and poor support for external SVG resources prevent those styles from being assigned in an external stylesheet.

Warning

In all browsers except Firefox, paint servers must be in the same document as the graphics; style rules therefore also must be defined in that document, not an external stylesheet.

Theoretically, an external stylesheet could be used with url() references that link back to the main document. In practice, this contradicts the main purpose of having an external stylesheet that you can reuse for many documents.

Because they cannot be collected in an external asset file, the gradients themselves are normally collected with the icon definitions in their own <svg> element that does not draw anything to the screen. (They must be inside an <svg> element to be correctly parsed as SVG content.)

Warning

As mentioned when we introduced user-space gradients, all browsers except Firefox use the parent <svg> of the gradient element to scale userSpaceOnUse gradients, instead of the coordinate system for the shape being painted. User-space gradients therefore break when using a separate definitions SVG.

For optimal browser support and easy to maintain markup, this SVG is usually placed at the top of the HTML <body>.

Warning

Older WebKit browsers will not correctly locate symbols and other reusable content defined later in the document than the elements that reuse them.

Ideally, you would place that definitions SVG inside your HTML <head> with other non-displayed content. At the very least, you would use display: none to ensure that extra SVG did not affect
your web page. Unfortunately, neither approach can be used in practice.

Warning

All browsers tested do not render gradients (or patterns) when an ancestor element of the gradient has display set to none, despite very clear statements in the SVG specifications that display should not have an effect. This is the most frustrating example of cross-browser consistency in SVG.

As a result, you need to use alternative CSS to ensure that the definitions SVG does not affect your web page, and ARIA attributes to ensure that assitive technologies do not process it. Furthermore, to avoid problems if the CSS takes too long to load, you will want to also use SVG attributes to collapse the size of the definitions element. Finally, because Internet Explorer implements the never-finalized SVG 1.2 proposal for keyboard control of SVG, you need to use the focusable attribute to explicitly tell it that the SVG should not receive keyboard focus.

Warning

In Internet Explorer, all <svg> elements in HTML are keyboard-focusable by default, and are only removed from the tab index with focusable="false". In the latest versions of WebKit/Blink browsers, <svg> elements are not keyboard focusable by default, but can be made so by setting the tabindex attribute to a positive integer. Firefox has not yet implemented either form of focus control.

With all those warnings out of the way, what does it look like to use gradients for SVG icons in an HTML file? Example 8-4 presents the core markup and styles for a web page that uses SVG as icons in the navigation menu. Different-colored gradients are used to distinguish the current site from navigation options, and to indicate hover/focus states; Figure 8-6 show the appearance when the first navigation link is focused.

[image: scpg 0806]
Figure 8-6. Gradient-filled and stroked icons in an HTML page

Example 8-4. Using gradients within SVG icons in an HTML page

HTML Markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Re-using Symbols with Gradients</title>
 <style type='text/css'>
 /* styles must be included in the same document */
 </style>
</head>
<body>
 <svg class="defs-only" aria-hidden="true" focusable="false"
 width="0" height="0"> [image: 1]
 <linearGradient id="silver-shine" spreadMethod="repeat"
 gradientTransform="rotate(40) scale(0.8)" >
 <stop offset="0" stop-color="gray" />
 <stop offset="0.35" stop-color="silver" />
 <stop offset="1" stop-color="gray" />
 </linearGradient>
 <linearGradient id="gold-shine"
 xlink:href="#silver-shine" > [image: 2]
 <stop offset="0" stop-color="gold" />
 <stop offset="0.35" stop-color="lightYellow" />
 <stop offset="1" stop-color="gold" />
 </linearGradient>
 <symbol id="home" viewBox="0 0 200 200"> [image: 3]
 <path d="M30,180 V80 H10 L100,10 190,80 H170 V180
 H90 V100 H60 V180 H30 Z
 M110,100 H150 V140 H110 Z"
 fill-rule="evenodd" />
 </symbol>
 <symbol id="star" viewBox="10 10 170 150">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 <symbol id="magnify" viewBox="0 0 200 200">
 <path d="M10,170 L70,110 A60,60 0 1,1 90,130 L30,190Z
 M85,104 A44,44 0 1,1 96,116 Z"
 fill-rule="evenodd" />
 <path d="M85,104 A44,44 0 1,1 96,116 Z" fill-opacity="0.7" />
 </symbol>
 </svg>
 Skip to Main Content
 <header>
 <h1>Gradients Gone Wild</h1>
 <nav>

 HOME
 <svg class="nav-icon" role="presentation">
 <use xlink:href="#home" /> [image: 4]
 </svg>

 Favorites
 <svg class="nav-icon" role="presentation">
 <use xlink:href="#star" />
 </svg>

 Search [image: 5]
 <svg class="nav-icon" role="presentation">
 <use xlink:href="#magnify" />
 </svg>

 </nav>
 </header>
 <main id="main">
 <h1>Search the Site</h1>
 <form>
 <input type="search" name="q"
 aria-label="Enter Search Terms"/>
 <button type="submit" aria-label="Search">
 <svg>
 <use xlink:href="#magnify" /> [image: 6]
 GO
 </svg>
 </button>
 </form>
 </main>
</body>
</html>

	[image: 1]

	The initial <svg> contains the definitions of reusable content. In addition to the defs-only class that triggers CSS hiding, it has an aria-hidden="true" attribute and width and height set to 0 in the markup, as well as focusable="false" so that Internet Explorer does not give it keyboard focus.

	[image: 2]

	The two gradients use the same geometry, so the spreadMethod and gradientTransform attributes are copied from one to the other with an xlink:href reference. The colors are different, however, and the <stop> elements included in the second gradient completely replace those from the first.

	[image: 3]

	There are three <symbol> elements defining the icons, each with a viewBox attribute so they will scale to fit the context in which they are used.

	[image: 4]

	In the main web page markup, each navigation icon is its own <svg> nested within the <a> element within the navigation list. A single <use> element references the symbol; with no positioning attributes on the <use> element, the reused symbol stretches to fit the size set on the <svg>.

	[image: 5]

	The current page will be represented in the navigation list by an anchor element (<a>) that does not have an href attribute, and is therefore not a valid hyperlink.

	[image: 6]

	The markup for the button icon is similar to that for the navigation; the difference in appearance stems from the different inherited styles and scale of the SVG. In modern browsers, there is no visible text for the button, so an aria-label attribute is added for an accessible name. The plain-text content (“GO”) within the SVG provides a fallback for old browsers.

Relevant CSS Styles:

svg.defs-only {
 display: block;
 position: absolute;
 height: 0; width: 0;
 overflow: hidden; [image: 1]
}
svg.nav-icon {
 display: block;
 width: 3em;
 height: 3em;
 margin: auto;
 fill: url(#silver-shine); [image: 2]
}
a:not(:link) > .nav-icon {
 fill: url(#gold-shine); [image: 3]
}
nav a:link:focus, nav a:link:hover {
 stroke: url(#gold-shine);
 stroke-width: 10px; [image: 4]
}
input, button {
 display: inline-block;
 height: 2em;
 padding: 0 0.5em;
}
input[type="search"] {
 width: calc(100% - 5em);
}
button {
 display: inline-block;
 width: 3em;
 vertical-align: top;
 color: inherit;
}
button svg {
 height: 100%;
 width: 100%;
 fill: currentColor; [image: 5]
}

	[image: 1]

	The defs-only class complements the attributes in the markup, to ensure that the definitions-only <svg> element does not affect the layout or visual appearance in any way.

	[image: 2]

	The <svg> elements used as navigation icons have a fixed height and width. A fill setting referencing one of the gradients is set on the SVG; it will be inherited by the <use> element and then by the reused symbol.

	[image: 3]

	The :link pseudoclass is used to distinguish between <a> elements with and without valid hyperlinks. When the class does not match, the SVG within is restyled to use the brighter gold gradient, to emphasize that this is the active page.

	[image: 4]

	For the other icons, a gold stroke is added to indicate interactivity when the user hovers or focuses the link. To prove that they can be, the styles are set on the <a> element directly. They will still be inherited by the SVG and its content, because none of the SVG elements set an alternative stroke style. Nonetheless, the 10px stroke width will be applied in the final coordinate system of the stroked graphics, which in this case is the coordinate system defined within each symbol.

	[image: 5]

	Because the styles are all inherited when used, they can be changed when the graphics are used in a different context on the same page. The search icon used within a form button will be styled using the current text color inherited from the <button>.

Because the SVG markup definitions and styles would be the same in every page on the web site, it would normally be compiled using some form of server-side processing. Alternatively, if the SVG code was extensive, and if most users visit multiple pages on the website, a client-side AJAX script could be used, allowing the SVG asset file to be cached on the browser.

Warning

Many popular SVG icon systems only use AJAX to import SVG symbols if external file references for <use> elements are not supported. WebKit and Blink browsers currently support these external symbol references, but not gradients and other paint servers. Ensure your script has specific rules for importing gradients and patterns if required.

Because the main graphical definitions are contained in a separate block of markup, it is easy to dynamically generate new instances of each icon, or switch those instances to use different gradients.

Example 8-5 uses the same gradients as Example 8-4, and one of the same icons, to dynamically generate a star-rating graphic based on a data attribute included in the HTML code. The gradient and symbol definitions are static markup, but the <use> instances are generated as required based on the data.

Because each SVG now contains multiple copies of each icon, a viewBox on the <svg> and positioning attributes on the <use> elements are required to scale everything correctly. In addition, ARIA attributes are used to convey the rating scale to assistive technologies, using the markup for a read-only range slider in a form. The visual appearance of each rating—how many stars are highlighted in the graphic—is derived directly from the aria-valuenow attribute, using CSS rules based on the nth-of-type selector. Figure 8-7 shows the final web page.

[image: scpg 0807]
Figure 8-7. Dynamically generated SVG star-rating icons with gradient effects

Example 8-5. Using gradients with dynamically inserted SVG icons

HTML Markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Reusing Symbols with Gradients</title>
 <style type='text/css'>
 /* styles must be in the same document */
 </style>
</head>
<body>
 <svg class="defs-only" aria-hidden="true" focusable="false"
 width="0" height="0"> [image: 1]
 <linearGradient id="silver-shine" spreadMethod="repeat"
 gradientTransform="rotate(40) scale(0.8)" >
 <stop offset="0" stop-color="gray" />
 <stop offset="0.35" stop-color="silver" />
 <stop offset="1" stop-color="gray" />
 </linearGradient>
 <linearGradient id="gold-shine" xlink:href="#silver-shine">
 <stop offset="0" stop-color="gold" />
 <stop offset="0.35" stop-color="lightYellow" />
 <stop offset="1" stop-color="gold" />
 </linearGradient>
 <symbol id="star" viewBox="0 0 200 200">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 </svg>
 <h1>Image Format Awesomeness:</h1>

 <li id="svg" data-rating="5"> [image: 2]
 <abbr title="Scalable Vector Graphics">SVG</abbr>

 <li id="png" data-rating="4">
 <abbr title="Portable Network Graphics">PNG</abbr>

 <li id="gif" data-rating="3">
 <abbr title="Graphics Interchange Format">GIF</abbr>

 <li id="bmp" data-rating="1">
 <abbr title="Bitmap (Windows)">BMP</abbr>

 <script>
 /* script could be loaded as a separate file */
 </script>
</body>
</html>

	[image: 1]

	The graphics definitions are the same as for Example 8-4, except that only one <symbol> is required.

	[image: 2]

	The main web page markup does not initially have any SVG content; instead, each item in the list is distinguished by the data-rating attribute.

CSS Styles:

html {
 background-color: #222;
 color: lightSkyBlue;
}
svg.defs-only {
 display: block;
 position: absolute;
 height: 0; width: 0;
 overflow: hidden; [image: 1]
}
ol {
 padding: 0;
}
li {
 display: block;
 text-align: center;
 list-style: none;
 font-size: larger;
}
svg.star-rating {
 display: block;
 margin: auto;
 width: 10em;
 max-width: 100%;
 height: auto;
 max-height: 2em; [image: 2]
}
.star {
 fill: url(#silver-shine); [image: 3]
}
[aria-valuenow="1"] .star:nth-of-type(-n+1),
[aria-valuenow="2"] .star:nth-of-type(-n+2),
[aria-valuenow="3"] .star:nth-of-type(-n+3),
[aria-valuenow="4"] .star:nth-of-type(-n+4),
[aria-valuenow="5"] .star:nth-of-type(-n+5)
{
 fill: url(#gold-shine); [image: 4]
}
[data-rating]:not(.initialized)::after {
 display: block;
 color: darkgoldenrod;
 text-shadow: black 1px 1px 1px,
 gold 0 0 3px;
 content: attr(data-rating); [image: 5]
}

	[image: 1]

	The same svg.defs-only styles from Example 8-4 are used to hide the element containing all the graphics definitions.

	[image: 2]

	The SVG elements that will contain the star-ratings are given a fixed width that will scale down if required; a max-height setting ensures a reasonable height in browsers that do not support auto-scaling of SVG proportions based on the viewBox.

	[image: 3]

	The star icons are by default set to use the silver-gray gradient.

	[image: 4]

	The correct number of stars are turned gold using a series of selectors tied to the aria-valuenow attribute. For example, the :nth-of-type(-n+3) selects the first three <use> icons in the group; these are the only icons for which a positive integer value of n will match the index of that element.

	[image: 5]

	If the script does not run—and the SVG stars are therefore not generated—a CSS pseudo-element will print the value of the data-rating attribute to the screen.

JavaScript:

(function(){
 var ns = {svg:"http://www.w3.org/2000/svg",
 xlink:"http://www.w3.org/1999/xlink"};
 var maxRating = 5;
 var index = 0;

 var ratings = document.querySelectorAll("[data-rating]"); [image: 1]
 for (var i=0, n=ratings.length; i<n; i++){
 var r = ratings[i];
 //add an `id` value if it doesn't exist
 r.id = r.id || "rating-" + (index++);

 //parse the rating
 var value = parseInt(r.getAttribute("data-rating"),10);

 //create and insert an SVG to represent the rating
 var s = document.createElementNS(ns.svg, "svg"); [image: 2]
 s.setAttribute("viewBox", "0 0 " + maxRating + " 1");
 s.setAttribute("class", "star-rating");
 s.setAttribute("role", "slider");
 s.setAttribute("aria-labelledby", r.id);
 s.setAttribute("aria-valuemin", 0);
 s.setAttribute("aria-valuemax", maxRating);
 s.setAttribute("aria-valuenow", value);
 s.setAttribute("aria-readonly", true);

 //create a group and give it a tooltip title
 var g = document.createElementNS(ns.svg, "g");
 s.insertBefore(g, null);
 var t = document.createElementNS(ns.svg, "title");
 t.textContent = value + " out of " + maxRating; [image: 3]
 g.insertBefore(t, g.firstChild);

 //create and insert the stars into the group
 for (var j=0; j<maxRating; j++) {
 var u = document.createElementNS(ns.svg, "use");
 u.setAttribute("class", "star");
 u.setAttributeNS(ns.xlink, "href", "#star");
 u.setAttribute("width", "1");
 u.setAttribute("x", j);
 g.insertBefore(u, null); [image: 4]
 }

 r.insertBefore(s, null);
 r.classList.add("initialized"); [image: 5]
 }
})();

	[image: 1]

	The script selects all elements with the data-rating attribute, and then loops through them. Each one is assigned an arbitrary id if one does not already exist; these will be needed for the ARIA references.

	[image: 2]

	An SVG element is created and customized with viewBox, class, and ARIA attributes, incorporating the rating value parsed from the data attribute as well as the maximum rating stored as a constant in the script.

	[image: 3]

	A <title> element is used to translate the rating into tooltip text. Because many browsers do not display tooltips for a <title> element that is a direct child of <svg>, an extra group (<g>) element is created to hold the title and the star icons.

	[image: 4]

	The star icons themselves (<use> elements) are all identical except for the x attribute which spaces them out across the SVG’s width. The icons are added to the <g>.

	[image: 5]

	The entire graphic is inserted at the end of the element that had the data-rating attribute. That element is then updated with the initialized class, to turn off the fallback CSS.

The dynamically generated content for each SVG is the same except for the aria-valuenow and aria-labelledby attributes and the <title> content. Written as markup, it would look like the following:

<svg viewBox="0 0 5 1"
 role="slider" aria-labelledby="png"
 aria-valuemin="0" aria-valuemax="5"
 aria-valuenow="4" aria-readonly="true">
 <g>
 <title>4 out of 5</title>
 <use class="star" xlink:href="#star" width="1"/>
 <use class="star" xlink:href="#star" width="1" x="1"/>
 <use class="star" xlink:href="#star" width="1" x="2"/>
 <use class="star" xlink:href="#star" width="1" x="3"/>
 <use class="star" xlink:href="#star" width="1" x="4"/>
 </g>
</svg>

This structure lends itself well to JavaScript libraries that use markup templates to generate dynamic content. However, be sure to confirm that the templating tool you are using properly recognizes SVG elements and assigns them to the SVG namespace; otherwise, you may end up generating a dynamic DOM with all the correct tag names and attributes, but no SVG graphics.

 About the Authors

 Amelia Bellamy-Royds is a freelance writer specializing in scientific and technical communication. She is best known in web design circles for her writings about SVG. Amelia is an Invited Expert on the W3C’s SVG Working Group, and is also active in the SVG Accessibility Task Force. She helps promote web standards and design through participation in online communities such as Web Platform Docs, Stack Exchange, and Codepen.

Amelia’s interest in SVG stems from work in data visualization, and builds upon the programming fundamentals she learned while earning a B.Sc. in bioinformatics. From there, she moved to work in science, health, and environment policy research, and then to a master’s degree in journalism.
Amelia currently lives in Edmonton, Alberta. If she isn’t at a computer, she’s probably digging in her vegetable garden or out enjoying live music.

Kurt Cagle worked as a member of the SVG Working Group, and wrote one of the first SVG books on the market in 2004. Currently an Invited Expert with the W3C Xforms working group, Kurt is also an XML Data Architect for the Library of Congress, after having worked in that role for the US National Archives. He has been a regular contributor to O’Reilly Media since 2003, and was an online editor in 2008–2009.

Chapter 3. Creating Colors

In this chapter, we more thoroughly examine the options for filling your graphics with solid blocks of color. It starts by outlining how color works on the Web, and describes the different ways in which you can specify colors on the Web: from the very readable (but not very rational) color keywords, to RGB and HSL color functions.

The color basics will be complemented by a discussion of partially transparent colors in Chapter 4. Color concepts are also an essential prerequisite for the colored gradients that will be introduced starting in Chapter 6.

Misty Rose by Any Other Name

When writing code for other people to read (for example, the examples in this book!), it is nice to be able to use human-readable color names like red or gold or aquamarine.

It is even nicer if a computer can read the same values. And with SVG, they can. Web browsers and SVG editors should all understand red, gold, and aquamarine. They will also recognize more fanciful names like mistyRose, peachPuff, and mediumSeaGreen.

Where do these names come from? There are two sources: a very simple set of color keywords that was introduced in early versions of HTML and CSS, and a much more extensive set of keywords that were adopted by SVG (and later CSS) from the X11 windowing system for Unix computers.1 Both sets of keywords are supported in all major SVG viewers. In addition, all but the oldest browsers in use also support them for other CSS properties.

As user-friendly as they are, the keyword system has a number of limitations.

For starters, the 147 keywords only describe a small fraction of the millions of possible color variations that a modern computer monitor can display.

The keyword choices are also rather inconsistent and arbitrary. The original web colors and the X11 colors sometimes conflict. The colors cyan (from X11) and aqua (from CSS 1) are identical—but different from aquamarine. The color darkGray (from X11) is actually lighter than the color gray (from CSS 1).

Tip

All the gray keywords are also duplicated using the spelling grey. But that’s a feature, not a bug!

Nonetheless, some older browsers only accepted the American gray spelling, so use it for optimal support.

The X11 color names themselves are not particularly systematic, either: some have dark, medium, and light variants, while others have pale variants. And the variations aren’t always logical: darkSeaGreen is not really darker than seaGreen, lightSeaGreen, and mediumSeaGreen; it’s just duller.

Nonetheless, if you enjoy the ease of using readable color names, all the recognized keywords are listed in Appendix A along with their numeric equivalents. Figure 3-1 shows the resulting colors as an alphabetical patchwork from AliceBlue to yellowGreen.

The keyword names, like most CSS keywords, are case insensitive. You could write them in all caps if you feel very strongly about your colors. Most official references use all lowercase, but this book uses camelCase (capitalizing the start of subsequent words) to make them easier to read.

[image: scpg 0301]
Figure 3-1. The colors associated with all the named color keywords

The code used to create Figure 3-1 is provided in Example 3-1. It uses XMLHttpRequest to load a separate file with the list of color keywords in alphabetical order, and then creates rectangles filled with each color. Each rectangle has a child <title> element containing the color name; if you run the code in a browser, these will be available as tooltips when you hover over each color swatch.

Example 3-1. Creating a color keyword patchwork

SVG Markup:

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="650px"
 xml:lang="en"
 viewBox="0 0 7 21" preserveAspectRatio="none" > [image: 1]
 <title>SVG Color Keywords</title>

 <script><![CDATA[
 /* script goes here */ [image: 2]
]]> </script>
</svg>

	[image: 1]

	There are 147 keywords in the SVG specification (including the variant spellings for gray), which is conveniently 7×21. The viewBox creates a grid of 7 columns and 21 rows, and uses preserveAspectRatio="none" to make that grid stretch to fill the entire <svg>.

	[image: 2]

	The graphic is drawn entirely by the script. Because this is an SVG file, an XML <!CDATA[…]]> block is required to contain any special characters in the code.

JavaScript:

(function(){
 var svgNS = "http://www.w3.org/2000/svg";
 var xlinkNS = "http://www.w3.org/1999/xlink";
 var svg = document.documentElement;

 var dataFileURL = "color-names.csv" [image: 1]
 var request = new XMLHttpRequest();
 request.addEventListener("load", draw);
 request.overrideMimeType("text/csv");
 request.open("GET", dataFileURL);
 request.send();

 function draw() { [image: 2]
 var w = 7; //swatches per row

 var colors = request.responseText.split("\n"); [image: 3]

 for (var i=0, n=colors.length; i<n; i++){
 var c = colors[i].trim(); [image: 4]

 var swatch = document.createElementNS(svgNS, "rect");
 swatch.setAttribute("width", 1);
 swatch.setAttribute("height", 1);
 swatch.setAttribute("x", i % w);
 swatch.setAttribute("y", Math.floor(i / w)); [image: 5]

 swatch.style.setProperty("fill", c); [image: 6]

 var tip = document.createElementNS(svgNS, "title");
 tip.textContent = c;
 swatch.insertBefore(tip, null); [image: 7]

 svg.insertBefore(swatch, null); [image: 8]
 }
 }
})();

	[image: 1]

	The XMLHttpRequest object is used to load a separate datafile with a list of color names. An event listener is used to call our drawing function when the file has been loaded. The MIME type, "text/csv", indicates that we’re expecting a delimited text file; that way, the browser won’t try to parse it as XML.

	[image: 2]

	The draw() function is called when the requested file has been downloaded. The datafile has each keyword on a separate line; it was created by making a spreadsheet with a single column, and then saving that as a comma-separated values (CSV) file.

	[image: 3]

	The request’s responseText property is used to get the entire file as a single JavaScript string. The split(token) method creates an array from a string, broken around that token—in this case, the newline character, escaped in Javascript as \n.

	[image: 4]

	A for loop cycles through each string in the array (i.e., each line from the datafile). The trim() method gets rid of any errant whitespace.

	[image: 5]

	Each rectangle is set to a width and height of 1 in the stretched SVG coordinate system; the horizontal and vertical positions are calculated from the index and the number of swatches per row.

	[image: 6]

	The fill style property is set using the keyword name.

	[image: 7]

	The keyword is also used as the text content of a <title> element, which is then added as a child of each <rect> to create the tooltips.

	[image: 8]

	Finally, the styled <rect> (with its tooltip) is added to the SVG.

Looking at Figure 3-1, it becomes clear that the color keywords are not a representative sample of all possible colors. In addition to the duplicated grays, there are quite a number of off-white colors, and relatively few dark tones.

Sensibly, there are many more options for defining colors than the 147 keywords. To fully understand how custom colors work, however, we’re going to first diverge into a little bit of physics and a little bit of biology.

A Rainbow in Three Colors

In physics, color is a property of the wave frequency or energy level of light. Visible light itself consists of a specific range of frequencies within the much wider spectrum of electromagnetic radiation. At lower energies, electromagnetic radiation creates radio waves; at much higher energies, it becomes X-rays.

The spectrum of light is continuous. There are no clear distinctions between colors, just a smooth rainbow from red through orange, yellow, green, blue, and violet—and beyond, to the ultraviolet lights that our eyes cannot see. Each color is associated with a specific frequency and energy level.

Just as you can tune your radio to be sensitive to one radio frequency and not others, so colored pigments are sensitive to specific frequencies of light. They absorb energy from light of the correct frequencies—colors—and reflect other light. Similarly, chemical reactions that emit light do so at specific frequencies—colors—based on the energy released by the reaction. Heat-based light sources can nonetheless be “tuned” to adjust the color. As the efficiency of a flame’s combustion reaction increases with different fuel or oxygen levels, the energy per photon (unit of light) increases and the color changes from a dull red, like glowing coals, to yellow, to a bright blue, like the gas flame shown in Figure 3-2.

[image: scpg 0302]
Figure 3-2. The blue flame of a gas burner (public domain photograph by Wikimedia Commons user Sapp)

The frequencies in light don’t mix any more than different radio stations do. Each photon preserves its own energy level and color. You can separate the many colors of sunlight into a rainbow, by shining the light through a prism or a fine mist.

So why, then, does sunlight normally look white, and not technicolor? That’s where the biology comes in.

Your eye is sensitive to a certain range of the electromagnetic spectrum—the part we call visible light—because of pigment molecules that absorb the energy from that light and convert it to chemical signals in your brain. Most human beings have four types of light-sensitive pigments in their eyes: a very sensitive but not color-specific pigment (responsible for night vision and some motion detection), and three color pigments. Each color pigment is sensitive to different but overlapping regions of the spectrum.

Our eyes, therefore, don’t see color as a continuous spectrum of every possible frequency of light. They only see how much light is absorbed by each of the three colored pigments. Your brain compiles this information into the full range of colors that you see.

The pigments in our eyes are usually associated with the colors blue, green, and red, but that’s an oversimplification: the green and red pigments are sensitive to blue light as well, and all three are sensitive to medium-green light. Another naming system describes them as S (for short wavelength), M (medium), and L (long wavelength), as the frequencies of light are usually defined by the light wavelength.

Note

Because light has a fixed speed, the frequency (number of waves per second) and the wavelength (distance between subsequent waves) are directly interchangeable. Higher energy light has a higher frequency and a shorter wavelength.

Because the eyes see color as a mixture of three different values, we can “mix” colors in art if not in physics. Figure 3-3 outlines how it works. When your eye is exposed to pure yellow light, both the M and L pigments are triggered in equal measure, but the S pigment is not. Your brain constructs the sensation of the color yellow from this information.

[image: scpg 0303]
Figure 3-3. How the three-color system fools our mind (clip art icons from openclipart.org by users jhnri4, pnx, and benoitpetit)

If your eye is exposed to an equal mixture of bright green and bright red light from the same location, the same pattern of pigment activation is created, and your brain still thinks it is looking at yellow.

Nearly every form of color communication in use, both print and screen, takes advantage of color mixing. The colors involved differ between print and screen, however.

Printed pigments, like the pigments in our eyes, absorb specific frequencies of light. When a pigmented ink or paint absorbs part of the light shining on it, it removes that frequency from the colors that reflect back to your eyes. Mix in another pigment, and another color is removed. This is called subtractive color mixing, and is the color mixing you learned in kindergarten. Yellow paint absorbs most blue-violet light, reflecting greens, yellows, and reds; blue paint absorbs the reds. Mix yellow and blue together, and the result absorbs both red and blue, reflecting back the green that you see.

As you might remember from kindergarten, mixing deep-colored paints often creates a muddy mess. Modern printers therefore use bright pigments that reflect more light than they absorb: cyan (blue-green), magenta (with both blue and red reflected) and yellow (red through green reflected). Blend all three together and all colors of light will be absorbed, creating a black ink; however, printers usually include an intense black ink separately. Graphics intended for high-quality printing use a CMYK (Cyan, Magenta, Yellow, and blacK) color model that defines each color as the combination of the four inks.

A computer screen, in contrast, shines light directly to your eyes. Multiple colors combine to increase the total amount of light that reaches your eyes. This is, therefore, an additive color model. Color computer monitors—like color TVs before them—use red, green, and blue light of frequencies that capitalize on the differences between the pigments in your eyes. The finely spaced red, green, and blue lights that make up each pixel are modulated to re-create nearly every pattern of activation in your eye that natural light could simulate.

Note

Because of the unevenly overlapping patterns of color sensitivity between the different pigments in your eye, there are some colors—certain saturated greens, intense blues, and deep reds—that can never be accurately represented by RGB light. Similarly, colored printing methods have certain natural colors that they can never completely re-create. The spectrum of possible colors that can be represented by a color system is known as the gamut of that color system.

Digital graphics systems have a fixed number of brightness levels for each color in a pixel. Early color computers had 4 levels for each color—including off—resulting in 64 (=4×4×4) colors overall. The original list of “web safe” color keywords used in HTML can all be mapped to a 64-color monitor. However, most modern computer displays support 256 levels (0–255) for each color, more than 16 million combinations. This is the basis of the color encoding used on the Web.

Custom Colors

There are two ways, in CSS or SVG, to define a custom color as a set of RGB values:

	
Function notation, like rgb(red,green,blue)

	
Hexadecimal notation, like #RRGGBB or #RGB

The values used in the function notation may be either integers between 0 and 255 or percentages. You can’t mix integers and percentages—all values must be the same type.

The values in a six-digit hexadecimal format also represent the numbers from 0 to 255, but do so using hexadecimal numbers. In hexadecimal, each digit can be a value between 0 and 15, instead of only 0 to 9 (hexa is 6, deci is 10, so hexadecimal is a base-16 number system). The extra digits are indicated by the letters A (10) to F (15).

The three-digit hexadecimal format is a shorthand for colors where both hexadecimal digits in each color are the same.

Tip

Hexadecimal digits are case-insensitive in CSS and SVG; #ACE and #ace are equivalent (and represent a light blue color that can also be written #AACCEE).

The following color definitions all specify the same RGB values:

	
rgb(102, 51, 153)

	
rgb(40%, 20%, 60%)

	
#663399

	
#639

Note

In some of the latest web browsers, you can also represent the color #639 with the keyword RebeccaPurple. The name was added to the CSS Color Module Level 4 in tribute to Rebecca Meyer, who loved the color purple and who died on her sixth birthday; her father, Eric Meyer, is a former member of the W3C CSS working group and the author of many books on CSS. It is the only color keyword that has been added since the SVG 1 specifications.

The CSS Color Module Level 3 introduced an alternative way of describing colors, based on a more universal color theory instead of the RGB computer monitor. The hue-saturation-lightness (HSL) color model describes colors as a mixture of a “pure” color and black, white, or gray. Specifically, the three values are as follows:

	Hue

	
The pure color, defined as an angle on a color wheel where pure red is 0°, pure yellow is 60°, intense green is 120°, and so on: 300° is magenta and 360° is red again.

	Saturation

	
The intensity of the pure color (adjusted for lightness) in the mixture, where 0% saturation is a shade of gray and 100% saturation is a vibrant color.

	Lightness

	
The level of white or black in the mixture, where 0% lightness is pure black, 100% lightness is pure white, and 50% lightness is the most intense color.

Unlike RGB values, HSL values are not always unique; different HSL combinations can create the same color. For example, any value with 0% saturation will be a gray, regardless of the hue, and any value with 100% lightness will be white, regardless of the hue or saturation.

Note

Two other color models are confusingly similar to HSL: the hue-saturation-value (HSV) model and the hue-saturation-luminance (unfortunately, also abbreviated HSL) model. The definitions for hue and saturation are the same, but the values for the third measure are not interchangeable. If you’re trying to match colors defined in other graphics software, be sure you’re using the same color model.

Figure 3-4 uses circular color wheels to demonstrate the relationship between hue angle and color, with different lightness values shown at different radii and different saturation values shown in separate wheels.

[image: There are four wheels, labelled s=100%, s=75%, s=50%, and s=25%. Each wheel is divided into 12 wedges, and each wedge has three concentric levels: darkest in the center, lightest on the edge.]
Figure 3-4. The hue-saturation-lightness (HSL) color model; hues increase clockwise from 0° on the right; lightness levels are 25%, 50%, and 75%, from the center; saturation values are as indicated

The brightest, most intense colors are created when saturation is 100% and lightness is 50%. In the RGB model, these colors have at least one color channel at 100% and one channel at 0%. In general, when converting from RGB to HSL:

	
The saturation value is calculated as 100% minus the percentage of the maximum channel made up by the minimum RGB channel:

S = (1 − min/max) × 100%

	
The lightness value is the average between the minimum and maximum color channels (as a percentage):

L = (min% + max%)/2

	
The hue is determined from the ratio of the medium to the maximum color channels, after subtracting the value from the minimum channel from each:

H = 0 + 60 × ([G−B]/[R−min]), if max is R
H = 120 + 60 × ([B−R]/[G−min]), if max is G
H = 240 + 60 × ([R−G]/[B−min]), if max is B

The fraction returns a value between –1 and +1, depending on which color is the minimum, which then increases or decreases the hue relative to the pure hue of the dominant color channel. The first formula returns negative hue angles for reddish-purples; these can be converted to the equivalent positive values by adding 360.

The conversion formulas work even if two color channels are tied (you can arbitrarily select one for the maximum or minimum). However, the hue values will be undefined for grays, and saturation will be undefined for black; it is convention to set undefined values to zero.

To specify a color as an HSL value in CSS, you use the hsl(h,s%,l%) function. The hue value, although theoretically measured in degrees, is given as a number without units. Saturation and lightness are always expressed as percentages. Some examples:

	
The color lime, rgb(0%, 100%, 0%), is hsl(120, 100%, 50%)

	
The color green, rgb(0%, 50%, 0%), is hsl(120, 100%, 25%)

	
The color purple, rgb(50%, 0%, 50%), is hsl(300, 100%, 25%)

	
RebeccaPurple, rgb(40%, 20%, 60%), is hsl(270, 50%, 40%)

Warning

Although hsl() color functions are supported in all modern browsers (Internet Explorer 8 being the only browser in common use without support), they may not be supported in other tools for editing, displaying, or converting SVG. The same is true for the CSS 3 partially-transparent color functions, which will be discussed in Chapter 4.

Example 3-2 presents the SVG and JavaScript code used to create Figure 3-4. It creates <use> elements for each colored pie segment, and uses the style object to set the fill to an hsl() color value. Each piece is also rotated into place using the hue value as the parameter to a rotate() transformation function.

Example 3-2. Building an HSL color wheel using scripted SVG

SVG Markup:

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="0 0 200 200" >
 <title>HSL Color Wheel</title>
 <defs> [image: 1]
 <circle id="center" r="1.5" fill="black"/>
 <path id="inner" transform="rotate(-15)"
 d="M0,0L15,0A15,15 0 0 1 12.99,7.5 L0,0Z" /> [image: 2]
 <path id="middle" transform="rotate(-15)"
 d="M15,0L28,0A28,28 0 0 1 24.25,14
 L12.99,7.5 A15,15 0 0 0 15,0Z" />
 <path id="outer" transform="rotate(-15)"
 d="M28,0L40,0A40,40 0 0 1 34.64,20
 L24.25,14 A28,28 0 0 0 28,0Z" />
 <circle id="edge" r="39" fill="none"
 stroke="white" stroke-width="2"/>
 </defs>
 <style type="text/css">
 text {
 text-anchor: middle;
 font-size: 8px;
 font-family: sans-serif;
 }
 </style>
 <rect fill="#888" width="100%" height="100%"/> [image: 3]
 <svg class="wheel" width="100" height="100" x="0" y="0"
 viewBox="-40,-40 80,80"> [image: 4]
 <use xlink:href="#center"/>
 <use xlink:href="#edge"/> [image: 5]
 </svg>
 <svg class="wheel" width="100" height="100" x="100" y="0"
 viewBox="-40,-40 80,80">
 <use xlink:href="#center"/>
 <use xlink:href="#edge"/>
 </svg>
 <svg class="wheel" width="100" height="100" x="0" y="100"
 viewBox="-40,-40 80,80">
 <use xlink:href="#center"/>
 <use xlink:href="#edge"/>
 </svg>
 <svg class="wheel" width="100" height="100" x="100" y="100"
 viewBox="-40,-40 80,80">
 <use xlink:href="#center"/>
 <use xlink:href="#edge"/>
 </svg>
 <script><![CDATA[
 /* script goes here */
]]> </script>
</svg>

	[image: 1]

	All the shapes are predefined to be reused many times. They are encoded to be drawn within an 80×80 centered coordinate system—each complete wheel will be a circle with radius 40.

	[image: 2]

	The wedge-segments are created using path notation and a little bit of trigonometry. Each wedge will be a 30° segment, centered on the x-axis. To reduce the trigonometry, the wedges are defined with one edge flat against the x-axis and then are rotated back until they are centered over it. This way, the (x,y) coordinates of one end of each arc can be determined as (r,0), where r is the radius. The coordinates of the other end are (r×cos(30°), r×sin(30°)), which is equal to (r×0.866, r×0.5).

	[image: 3]

	A rectangle filled with 50% gray (#888) provides a background to the image.

	[image: 4]

	Each color wheel is defined by an <svg> element that positions it within the image and creates the correct 80×80 centered coordinate system using its viewBox attribute.

	[image: 5]

	Each <svg> also contains the black center and white edges of the wheel, as these do not need any special calculations.

JavaScript:

(function(){
 var svgNS = "http://www.w3.org/2000/svg";
 var xlinkNS = "http://www.w3.org/1999/xlink";

 var wedge = 30; //angle span of each pie piece, in degrees
 var saturation = ["100%", "75%", "50%", "25%"]; [image: 1]
 var lightness = {outer:"75%", middle:"50%", inner:"25%"}; [image: 2]

 var wheels = document.getElementsByClassName("wheel"); [image: 3]
 var h,s,l,w,p,u;
 for (var i=0, n=wheels.length; i<n; i++){
 w = wheels[i];
 s = saturation[i]; [image: 4]
 for (h=0; h < 360; h += wedge) {
 for (p in lightness){ [image: 5]
 l = lightness[p];
 u = document.createElementNS(svgNS, "use");
 u.setAttributeNS(xlinkNS, "href", "#"+p);
 u.setAttribute("transform", "rotate("+h+")"); [image: 6]
 u.style.setProperty("fill", "hsl("+[h,s,l]+")"); [image: 7]
 w.insertBefore(u, w.firstChild); [image: 8]
 }
 }
 var t = document.createElementNS(svgNS, "text"); [image: 9]
 t.textContent = "s = "+s;
 t.setAttribute("y", "35");
 w.insertBefore(t, null);
 }
})();

	[image: 1]

	The saturation values for each wheel are stored in an array, ready to be assigned to the individual <svg> elements. Because we don’t need to do any mathematical calculations on these values, they are stored as strings including the % marker.

	[image: 2]

	Rather than using two separate arrays to hold the lightness values and the id values for the different wedge segments, they are paired up using a key-value data object.

	[image: 3]

	The nested <svg> elements are selected by class name.

	[image: 4]

	A for loop cycles through each <svg> and each saturation value by index. A nested for loop is then used to cycle through the hue values, incrementing them at each cycle by the 30° angle span of each wedge.

	[image: 5]

	Finally, a different type of for loop is used to traverse through all the data keys in the lightness object. The p variable gets set to the key string at each cycle (e.g., "outer", "middle", or "inner"). The key can then be used to access the value from the object, but it is also used directly to set the xlink:href attribute.

	[image: 6]

	The hue value is used to rotate the wedge into place; because the wheels use a centered coordinate system, a simple rotation pivots the path around the center of the wheel. The value of the transform attribute is a string representation of the transformation function, rotate(h); the parentheses are part of the string, not part of a JavaScript function!

	[image: 7]

	The fill is set, as an inline style property, by creating a JavaScript string that contains the CSS hsl() function—again, including the parentheses. The comma-separated list of parameters is created by grouping the values into an array; when an array is concatenated to a string, the string equivalent of each value is printed out, separated with commas.

	[image: 8]

	The wedge piece is then added to the <svg> before the existing first child element, so that it will be drawn underneath the black center and white rim declared in the markup.

	[image: 9]

	The final block of code runs once per <svg> and creates the text labels. They are inserted after all the other elements (“before” nothing, or null) so that the text is visible on top of the color wheel.

The introduction of HSL color functions was intended to make it easier to create sets of matching colors: the same hue in different lightness or saturation values, or the same lightness and saturation but opposite hues. Nonetheless, the HSL model was also chosen because browsers can rapidly convert between HSL and RGB values, and it has its limitations. The hue color wheel does not correspond well with the red-yellow-blue color wheels we know from mixing paint as a child. More importantly, the lightness model doesn’t reflect the perceived differences in brightness between equally intense colors of different hues.

For these reasons, and because the history of computer hardware led to certain optimizations being standard in every graphical processor, a more complex color model is used in gradients and color blending.

Mixing and Matching

Your eye’s sensitivity to light does not correspond directly with the brightness of the pixels on your computer monitor. You can detect changes between black and dark gray more easily than the equivalent change between white and light gray. With colors, a fully saturated blue light seems much darker than the same intensity of red, and neither is as bright—from your mind’s perspective—as the full intensity of the green pixel components.

As a result, mixing equal proportions of red and blue (or blue and green) light doesn’t create a color that matches what our brain considers to be halfway in-between. The same is true for nearly every other color combination, and also for shades of gray.

Computer monitors—especially the CRT monitors used when the Web first became popular—add their own distortion to the effective brightness of every color value. Without standardization, the same colors could look very different on different displays.

When blending between colors in computer graphics, most modern computer displays use the sRGB (sometimes called the standard RGB) model. It defines functions to convert RGB display colors into a standardized scale that reflects the perceived differences in brightness on an sRGB-compatible computer monitor.

The use of sRGB primarily affects the blending of colors. Figure 3-5 compares the results when using the sRGB model to blend colors or shades of gray, versus calculating the intermediary colors as based on simple linear arithmetic (shown in the bottom gradient in each pair).

[image: scpg 0305]
Figure 3-5. Color blending with sRGB color space (top gradient in each pair) versus the linear RGB blending (bottom gradient in each pair), for fully saturated colors and for grayscale

The sRGB model makes numerous assumptions about the type of equipment and lighting that will be used to view the image. In addition, there is considerable variation from person to person in how colors are perceived—even before you factor in color blindness, a shortage of one or more of the light-sensitive pigments in the eyes. You may not agree that the sRGB color blend is better than the linear model, let alone that it is the best possible blend. But it has become the standard for computer graphics, particularly on the Web.

Note

The sRGB model—and RGB color spaces in general—are less popular in print graphics because they cannot encode all colors that can be created on high-quality printers. The SVG specifications include ways in which alternative color definitions may be used to ensure high-fidelity printed color results. These alternative definitions use color profiles as defined by the International Color Consortium (ICC), a partnership of major digital graphics companies. ICC color profiles for SVG are not implemented in web browsers.

The sRGB color model is used by default for CSS and most of SVG. The SVG specifications define a property, color-interpolation, which could allow authors to switch to the mathematically simpler linear blending of colors (linearRGB mode). This might be preferable if your graphic consists of many very bright, high-saturation colors of contrasting hues. The sRGB blending model can generate unpleasantly dark in-between colors when blending contrasting bright colors, as can be seen in the topmost gradient in Figure 3-5.

Warning

None of the major web browsers support linearRGB color blending at the time of writing. Figure 3-5 was generated in the Apache Batik SVG viewer. Even Batik only supports linear blending for gradients, and not for blending layered, partially transparent colors.

The exception to the sRGB dominance is for filter calculations. SVG filters allow you to directly manipulate the RGB color channels, and by default these calculations run in linearRGB mode. There is much better browser support for setting the color-interpolation-filters property to sRGB, to turn on sRGB adjustments in filters.

Both of the color interpolation options are style properties that can be set on individual elements or the SVG as a whole, using presentation attributes or CSS rules. For gradients and filters, the property used is the one set on the gradient/filter element, not on the element being painted.

Certain filter operations, as well as SVG masking, use their own explicit means of compensating for the relative brightness of different colors. These operations are based on the luminance of colors. Luminance is a measure of brightness, and is distinct from the lightness value used in the HSL color functions. Instead, luminance is adjusted based on the fact that a fully saturated green or yellow is perceived as brighter than a fully saturated red, which is nonetheless brighter than a fully saturated blue.

Tip

The color-interpolation property does affect the conversion from color to luminance for masking in some browsers and is therefore different by default from luminance-based filters.

The luminance adjustments used in these tools have a similar purpose to the sRGB adjustments, but they are not equivalent. sRGB affects the scaling of grays, or of colors with different lightness values. The luminance weighting only affects differences in hue. Furthermore, the luminance factors create a linear scaling of each color channel, while sRGB defines a curved (gamma-adjusted) relationship between the color value and perceived intensity.

What does all this matter to you? Mostly, it is a warning. If calculating colors yourself as part of a script, or manipulating them with filters, be aware that simple mathematical averaging of R, G, and B values will create different results from colors created by the browser when blending gradients or combining partially transparent colors. Similarly, changing color hues using filters (luminance-adjusted, and sometimes sRGB-adjusted) will result in different colors than changing the hue value in the hsl() color function.2

This section has been mostly theoretical. The visible impact of the way colors are blended comes when working with transparency (the subject of Chapter 4) and with gradients (Chapters 6 through 9).

1 If you’re interested in how these keywords ended up as the standard for X11 in the first place, Alex Sexton has dredged up the history from old Unix forums. His presentation “Peachpuffs and Lemon Chiffons” from CSSConf 2014 can be watched online.
2 Thanks to Noah Blon for bringing my attention to the discrepancies between hsl() color functions and hue-rotate filter operations.

Chapter 4. Becoming Transparent

Solid regions of color have their place, but for many graphics, you want to add a little bit of subtlety. Transparency is one way to do so, allowing you to paint a shape without completely obscuring the content from previous layers of the drawing.

Transparency is in some ways another facet of color, and in some ways a distinct and much more complex topic. This is reflected in the different ways you can define transparency, which we’ll compare and contrast in this chapter.

One thing is constant when talking about transparency and web design: you don’t talk about transparency, you talk about opacity. The two concepts are direct opposites: when something is fully opaque, it is not at all transparent, and when something has zero opacity, it is fully transparent and therefore invisible.

See-Through Styles

SVG uses three distinct properties to control opacity of basic shapes and text: opacity, fill-opacity, and stroke-opacity. All of these can be set with presentation attributes or with CSS style rules.

CSS Color Module Level 3 extended the opacity property to apply to all content. In addition, rather than introduce *-opacity properties for every facet of CSS painting, this module introduced new color functions. Partially transparent color can be defined using the rgba() and hsla() color functions, and then used anywhere in CSS where a color value is needed.

Opacity on the Web is always expressed as a decimal number between 0.0 (invisible) and 1.0 (solid, no transparency). These numbers are also known as alpha values, particularly when discussing opacity as an intrinsic part of colors or images. The a in rgba() and hsla() refers to the alpha channel. These functions take four values, instead of the usual three, with the fourth being the alpha value between 0 and 1.

Note

The keyword transparent, which formerly had a special meaning for CSS backgrounds, has been redefined as a named color. Equivalent to rgba(0,0,0,0), it can be used like any other color keyword in browsers that support CSS 3 colors.

The final effect of modifying a graphic’s alpha value depends on the method you use. In particular, the overall opacity property works in a significantly different way compared to the other options.

The opacity property applies to the element it is set on—even if that is a <g> group, <svg>, or <use> element—and is not inherited. It takes the final drawn result for that element, including all its child content, and makes it uniformly more transparent.

Tip

The opacity value is applied after determining the final color at every point where two shapes—or fill and stroke of the same shape—overlap.

Setting opacity to less than 1 creates a stacking context, flattening and containing all child content. In CSS layout, this can significantly affect the position of elements. It has no similar effect in SVG 1.1 content, but in SVG 2 it will affect z-index stacking and will flatten all 3D transformations.

In contrast, when you set stroke-opacity or fill-opacity, or when you use rgba or hsla color functions, the transparent effect is applied at the time each shape is drawn, to that colored section only. The stroke-opacity and fill-opacity properties are both inherited by default.

Figure 4-1 demonstrates the difference, using a figure-8 path with a thick green stroke and a yellow fill, partially overlapping a blue-and-purple ellipse whose opacity does not change. The green and yellow shape is shown at full opacity (top left) and set to half opacity using stroke-opacity and fill-opacity (top right), opacity on a <use> element (bottom left), or rgba colors for the stroke and fill (bottom right). Example 4-1 gives the code.

[image: scpg 0401]
Figure 4-1. A green and yellow shape at full opacity and made partially transparent in three different ways

Example 4-1. Using different opacity options to control the transparency of your graphics

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="0 0 200 200"
 xml:lang="en">
 <title>Opacity Adjustments</title>
 <defs>
 <ellipse id="background"
 ry="15" rx="35" transform="rotate(20)"
 stroke="purple" fill="lightSkyBlue"
 stroke-width="5" /> [image: 1]
 <path id="foreground" stroke-width="10"
 d="M0,0C0,-60 60,0 0,0 S 0,60 0,0Z" /> [image: 2]
 </defs>
 <style type="text/css">
 svg svg {
 overflow: visible;
 }
 text {
 text-anchor: middle;
 font-size: 7px;
 font-family: sans-serif; [image: 3]
 }
 </style>
 <rect fill="#888" width="100%" height="100%"/>
 <svg width="100" height="100" x="0" y="0"
 viewBox="-40,-45 80,80"> [image: 4]
 <use xlink:href="#background"/>
 <use xlink:href="#foreground"
 fill="yellow" stroke="green" /> [image: 5]
 <text y="-35">solid</text>
 </svg>
 <svg width="100" height="100" x="100" y="0"
 viewBox="-40,-45 80,80">
 <use xlink:href="#background"/>
 <use xlink:href="#foreground"
 fill="yellow" stroke="green"
 fill-opacity="0.5" stroke-opacity="0.5" /> [image: 6]
 <text y="-35" dy="-0.3em"> stroke-opacity="0.5"
 <tspan x="0" dy="1em">fill-opacity="0.5"</tspan>
 </text>
 </svg>
 <svg width="100" height="100" x="0" y="100"
 viewBox="-40,-45 80,80">
 <use xlink:href="#background"/>
 <use xlink:href="#foreground"
 fill="yellow" stroke="green" opacity="0.5" /> [image: 7]
 <text y="-35">opacity="0.5"</text>
 </svg>
 <svg width="100" height="100" x="100" y="100"
 viewBox="-40,-45 80,80">
 <use xlink:href="#background"/>
 <use xlink:href="#foreground"
 fill="rgba(100%, 100%, 0%, 0.5)"
 stroke="rgba(0%, 50%, 0%, 0.5)" />
 <text y="-35">rgba(r,g,b,0.5) colors</text>
 </svg>
</svg>

	[image: 1]

	The reused shapes are predefined in a <defs> section. The background ellipse has all its painting properties defined as presentation attributes.

	[image: 2]

	The foreground <path> has a specified stroke-width but will otherwise inherit its painting styles.

	[image: 3]

	A CSS <style> block is used to style the text labels and prevent cropping of the nested <svg> elements. Note that the 7px font-size will be interpreted within the local coordinate system, and so will not create unusually small type.

	[image: 4]

	Each nested <svg> re-creates the same local coordinate system in a different quadrant of the main graphic, so that the reused graphics can be positioned in the same way.

	[image: 5]

	The background element is reused as is within each sample, and then the foreground layered on top. In this first example, the foreground is given solid fill and stroke colors.

	[image: 6]

	The following <svg> elements position the content in the other quadrants of the graphic, and use different presentation attributes on the foreground <use> elements.

	[image: 7]

	For the opacity setting, it will apply directly on the <use> element as a combined group, instead of inheriting to the reused graphic.

Figure 4-1 also demonstrates some of the concepts we discussed in Chapter 2. The strokes are centered over the edge of each shape. When the stroke is partially transparent (due to stroke-opacity or an rgba color), this creates a two-toned color effect, with the fill visible under the inside part of the stroke.

Another feature to note is that the overlapping sections of stroke do not have a different color tone, compared to areas where the stroke only passes once. Conceptually, we like to think of strokes as if they were made by a marker or paint brush tracing out the lines. If that were true, these double-stroked regions would have twice as intense color, the way it would if you used translucent watercolor paint and passed your brush over the same region twice. However, the computer works by caculating out the total area of the stroke and then applying the coloring evenly, as if it was cut out of a sheet of semitransparent plastic.

With all these different ways of controlling opacity, what happens when you combine them? The effect is multiplied. For example, the following circle has its fill made partially transparent in two different ways:

<circle r="10" fill="hsla(240,100%,75%, 0.5)"
 fill-opacity="0.6">

The effect would be exactly the same with the following code, because 0.5×0.6=0.3:

<circle r="10" fill="hsl(240,100%,75%)"
 fill-opacity="0.3">

It gets a little more complicated with opacity, because the transparency is applied after combining the other colors. Nonetheless, an opacity: 0.5 property still causes the alpha value of each pixel in the shape to be cut in half (multiplied by 0.5), after applying the opacity levels from all other properties.

Because the opacity property is applied using a simple mathematical adjustment of each pixel value, it can be efficiently implemented by the graphical processing unit (GPU) of most video cards. Changes in opacity can often be animated quite smoothly as a result, although not all browsers take advantage of this for SVG content.

Partially transparent colors, fill-opacity, and stroke-opacity do not create the same optimization, because they only affect parts of an element. However, if you are not animating the opacity, these properties can be more performant because they do not force the creation of a stacking context.

The Net Effect

As mentioned in Chapter 3 (“Mixing and Matching”), the color created by a partially opaque object is calculated using the sRGB model. According to the specifications, it should be affected by the color-interpolation mode, but sRGB is the default and the only mode supported in most software used to view SVG.

The final color displayed when layers overlap is generated by, first, scaling both colors according to the sRGB model, then taking a weighted average between the background and foreground—where the alpha value is the weight of the foreground—and finally reversing the sRGB scale. This calculation works regardless of whether the background color was created from a single element or from blending multiple partially transparent ones.

This method of blending colors is known as simple alpha compositing. In many graphics programs, it is also known as the “normal” blending mode.

Beyond Simple Alpha Blending

Many graphics programs define alternative blending modes that control how the colors from two different layers or objects are combined together.

In SVG 1.1, many of these blending modes are available, but only through filters. A new Compositing and Blending Specification created by the W3C standardizes the definitions of these blending modes for use by CSS and HTML 5 canvas as well. Two of the new CSS properties it introduces can apply to SVG: mix-blend-mode and isolation.

The mix-blend-mode on an element controls how that element is blended into the colors behind it. There are 16 different modes (including the default, normal) that define equations for combining the RGBA or HSLA values of the element with the equivalent values for the blended background content.

The isolation property on a grouping element or <use> element limits how far the blending continues. Child content of an isolated element is blended together, but then that element uses its own blending mode to blend the result into the background. You explicitly isolate an element using isolation: isolate, but various other CSS properties will cause isolation, including setting opacity other than 1, using filters or masks, setting a blending mode other than normal on the group itself, or using 3D transformations. An inline <svg> element in HTML will by default be isolated.

At the time of writing, blending modes are supported in the latest versions of Firefox, Chrome, Opera, and Safari. They are not supported yet in many mobile browsers or in Internet Explorer, although they are “under consideration” for Microsoft Edge.

The colors created when using simple alpha blending directly correspond to colors in an sRGB gradient between the background color and the solid color of the object. The alpha value determines the distance along the gradient. If alpha is zero, and the object is completely transparent, the initial value of the gradient is used—in other words, the background color. If alpha is 0.5, the midpoint of the gradient is used. If alpha is 1 (the object is completely opaque), the displayed color is the same as the end point of the gradient—the foreground object’s own color.

Figure 4-2 demonstrates this relationship by comparing a smooth gradient from red (#F00) to blue (#00F) with the result of layering blue squares overtop of a solid red rectangle, where the squares vary in their fill-opacity values.

Note

It may appear to you as if the squares in Figure 4-2 were also filled with gradients, transitioning in the opposite direction. This is a well-recognized optical illusion. Your eyes and brain enhance the contrast between colors on either side of an edge. When a solid-colored element has different contrasting colors on each side—or a gradient on one side—the contrast enhancement is perceived as a gradient.

To confirm that you really are looking at a solid color, use pieces of paper (all the same color) to cover up the adjacent sections of the figure, until you only see a single, solid-color square.

[image: scpg 0402]
Figure 4-2. Blending colors with gradients and with opacity; the squares consist of a solid red rectangle underneath blue squares with fill-opacity of 0, 0.25, 0.5, 0.75, and 1

Example 4-2 presents the code used to generate Figure 4-2.

Example 4-2. Using opacity to create blended colors that match gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="200px" viewBox="0 0 400 200"
 xml:lang="en">
 <title>Blending with opacity and gradients</title>
 <defs>
 <linearGradient id="gradient">
 <stop offset="0" stop-color="#F00"/>
 <stop offset="1" stop-color="#00F"/>
 </linearGradient>
 <rect id="square" width="100" height="100" y="100"/>
 </defs>

 <rect fill="url(#gradient)" width="400" height="100"/>
 <rect fill="#F00" width="400" height="100" y="100"/>
 <g fill="#00F">
 <use xlink:href="#square" x="-50" fill-opacity="0" />
 <use xlink:href="#square" x="50" fill-opacity="0.25" />
 <use xlink:href="#square" x="150" fill-opacity="0.5" />
 <use xlink:href="#square" x="250" fill-opacity="0.75" />
 <use xlink:href="#square" x="350" fill-opacity="1" />
 </g>
</svg>

Chapter 6 will introduce the <linearGradient> and <stop> elements used in Example 4-2 and describe how they can be adjusted to create different gradient effects. But first, Chapter 5 will explore what it means in SVG to fill one element with a URL reference to another.

Chapter 10. Tiles and Textures

While introducing paint servers in Chapter 5, we mentioned that there were a number of different sources you might wish to use to paint a shape: a single color, one or more gradients, repeating patterns, bitmap graphics, text, even other SVG files. So far, we have described how to use a solid color or a single gradient. All the remaining possibilites will use a single paint server element: <pattern>.

An SVG pattern defines a block of SVG graphics that will be used as a paint server for other shapes. Any SVG content can be used, including images, text, and shapes filled with gradients. A pattern is repeated in a rectangular (or transformed rectangular) tiled layout. You can, however, make one tile the full size of the shape to create a non-repeating fill; that opens so many possibilities it will be discussed separately, in Chapter 11.

There are a number of options for sizing both the tiles and the pattern content. This make many different designs possible—but others remain difficult. This chapter tries to emphasize both what can and what can’t be done, and offers some workaround suggestions for the more frustrating situations. We also compare SVG patterns with a type of repeating pattern most web designers are familiar with: repeating CSS background images.

Building a Building Block

In many ways, the <pattern> element is similar to the gradient elements introduced in previous chapters. The attributes on the element itself define the shape and size of the pattern tile (repeating unit). The child content of the <pattern> makes up the graphics that are drawn to the screen.

The attributes on <linearGradient> and <radialGradient> matched those of a <line> and <circle>. The geometrical attributes on a <pattern> are like those of a <rect> or <image>: x, y, width, and height. All are zero by default, and as usual, a width or height of zero prevents the content from being drawn.

To understand how patterns work, it’s usually best to see one in action. Example 10-1 presents the code for a simple striped pattern, and then uses it to fill two shapes. Figure 10-1 shows the result.

[image: scpg 1001]
Figure 10-1. Shapes filled with a simple repeating stripes pattern

Example 10-1. Filling shapes with a simple repeating stripes pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" >
 <title xml:lang="en">Striped Pattern</title>
 <style type="text/css">
 svg {
 stroke-width: 6px;
 }
 </style>
 <pattern id="stripes" x="5%" width="10%" height="100%">
 <line x1="3" x2="3" y2="100%" stroke="maroon" />
 <line x1="9" x2="9" y2="100%" stroke="gold" />
 <line x1="15" x2="15" y2="100%" stroke="tomato" />
 </pattern>

 <g stroke="royalBlue" fill="url(#stripes)">
 <rect x="0.1in" y="0.1in" width="3.8in" height="1in" />
 <ellipse cx="50%" cy="2.1in" rx="1.2in" ry="0.8in" />
 </g>
</svg>

The pattern itself is declared with the following code:

<pattern id="stripes" x="5%" width="10%" height="100%">

The id attribute, as with other paint servers, is required so that the pattern can be used. The width and height attributes define the size of each repeating tile. The tiles are arranged starting from the point defined by the x horizontal offset and y vertical offset (here left as the default 0). The (x,y) point defines the position of the top left corner of the reference tile; additional tiles are then placed above, below, left, and right for as many repeats as required to fill the shape.

But how are width, height, x, and y measured? Look at Figure 10-1 again, paying attention to the differences between the two shapes. The stripes are the same width in both shapes, but are much closer together in the ellipse. The width is clearly not an absolute value.

By default, the attributes that control the size of the pattern tile are calculated in objectBoundingBox units. Each tile extends the full height (100%) of the bounding box, but only 10% of its width. No matter how wide the shape is, there will be exactly 10 sets of stripes spaced out across it.

As you might have guessed from your experience with gradients, the default object bounding box dimensions for tiles can be changed to userSpaceOnUse.

Tip

The relevant attribute is called patternUnits, and “Stretching to Fit” will examine the effects of changing it.

The x and y offsets are also measured relative to the bounding box. For Example 10-1, the 5% horizontal offset is half of the 10% tile width. This positions the first complete stripe shifted over that distance from the top left corner of the bounding box. However, the pattern still repeats in all directions: in the ellipse, you can just see the edge of another stripe on the left side, because the stripes extend farther across the tile width than the 5% offset.

The stripes themselves, therefore, are not scaled proportionate to the object bounding box. By default, the contents of a pattern are measured in the userSpaceOnUse coordinate system (i.e., the coordinate system in effect for the shape being filled). The origin of that coordinate system, however, is translated to the top left corner of each pattern tile.

Tip

This scaling of the pattern graphics is controlled by a patternContentUnits attribute on the <pattern> element. userSpaceOnUse is the default; and the alternative option is objectBoundingBox.

The stripes—the three <line> elements—are much longer than they need to be, extending to 100% of the full height of the SVG. According to the SVG 1.1 specifications, the pattern should use the value of 100% in effect for the shape being filled. However, as mentioned in Chapter 7, user space units are not consistently implemented by browsers when the shape is nested in a different SVG from the paint server.

For many pattern designs, it is necessary to over-size the graphics to be sure that the entire tile is filled, no matter the size of the shape. A pattern element has overflow: hidden set by default, which causes the graphics will be clipped to the tile.

Warning

Visible overflow is intentionally left undefined for patterns in SVG 1.1 and 2, in response to inconsistent implementations in SVG 1. This means that each browser can handle it however they choose. Changing this setting is therefore not recommended.

A more practical example of using pattern tiles that scale with the bounding box, but stripes that don’t, is given in Example 10-2. It uses a pattern to divide a rectangle into a fixed number of equal pieces, each one outlined with a thin grid line. This type of overlay grid is a common tool in image editing software; it is shown here within a super-simplified web application, overlaid on top of a photograph.

To demonstrate the scaling effect of the pattern tiles, a thumbnail version of the photo is also included with its own grid; the grid squares are smaller on the thumbnail, but the grid lines stay the same thickness. In both cases, the lines are actually drawn much larger than required, and trimmed to fit with hidden overflow. The complete page is shown in Figure 10-2.

[image: scpg 1002]
Figure 10-2. The same 3×3 pattern grid filling rectangles of different sizes

Example 10-2. A resizable grid pattern within a photo-editing application

HTML Markup & JavaScript:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Photo Grid Overlay</title>
 <style type='text/css'>
 /* styles must be in the same document */
 </style>
</head>
<body>
 <fieldset id="grid-options"
 role="radiogroup" aria-controls="graphics">
 <legend>Show Grid:</legend> [image: 1]
 <label>
 <input type="radio" name="grid" value="none" checked>
 None</label>
 <label><input type="radio" name="grid" value="grid4">
 2×2</label>
 <label><input type="radio" name="grid" value="grid9">
 3×3</label>
 </fieldset>

 <svg id="graphics" viewBox="0 0 400 400">
 <title>Photo View</title>
 <pattern id="grid4" width="50%" height="50%" > [image: 2]
 <g stroke="gold" stroke-width="4px">
 <line x2="100%" /> [image: 3]
 <line y2="100%" />
 </g>
 </pattern>
 <pattern id="grid9" xlink:href="#grid4"
 width="33.33333%" height="33.33333%" /> [image: 4]

 <g>
 <title>Full image</title>
 <image width="400" height="300"
 xlink:href="cat.jpeg" />
 <rect width="400" height="300" class="grid" /> [image: 5]
 </g>
 <g transform="translate(140,310)">
 <title>Thumbnail</title>
 <image width="120" height="90"
 xlink:href="cat.jpeg" />
 <rect width="120" height="90" class="grid" />
 </g>
 </svg>
 <script>
 document.getElementById("grid-options")
 .addEventListener("change", updateGrid); [image: 6]

 function updateGrid(e) {
 var svg = document.getElementById("graphics"),
 radio = e.target;
 if (radio.checked) {
 svg.setAttribute("class", radio.value); [image: 7]
 }
 }
 </script>
</body>
</html>

	[image: 1]

	The initial HTML markup sets up a small form field with options for turning on the grid.

	[image: 2]

	The inline SVG code defines the <pattern> elements. The patterns use the default patternUnits setting: width and height of the pattern tiles are percentages of the bounding box.

	[image: 3]

	The content, however, is drawn in the user space coordinate system. It consists of two lines (grouped together to apply common styles), each of which starts at the origin and extends in either the horizontal or vertical direction, up to the width or height of the SVG—which will usually be beyond the pattern tile edge.

	[image: 4]

	The second pattern is written shorthand, using an xlink:href reference to the first pattern, but then overriding the width and height attributes. Just as with gradients, the xlink:href attribute allows one <pattern> element to become the template for another.

	[image: 5]

	The rest of the SVG code describes the visible content: <image> elements with matching <rect> elements to contain the grid.

	[image: 6]

	The short JavaScript snippet listens for changes to the radio-button selection.

	[image: 7]

	A simple function responds by changing the class on the <svg> element, which will trigger appropriate CSS changes. For this simple demo, the setAttribute method is used to cancel out previous class settings and apply new ones in a single step. For a more complex application, you would probably need to be more careful about not affecting other classes.

CSS Styles:

body {
 padding: 0.5em 0.25em;
 background-color: lightGray;
}
fieldset {
 display: block;
 background-color: white;
 margin-bottom: 1em; [image: 1]
}
legend {
 background-color: inherit;
 border-radius: 0.25em;
 padding: 0 0.2em;
}
svg {
 width: 100%;
 min-height: 300px;
 max-height: 100vh; [image: 2]
 shape-rendering: crispEdges;
}
.grid {
 fill: none;
 pointer-events: none; [image: 3]
}
.grid4 .grid {
 fill: url(#grid4); [image: 4]
}
.grid9 .grid {
 fill: url(#grid9);
}

	[image: 1]

	The first few CSS rules control the overall layout of the web page and form elements.

	[image: 2]

	The <svg> element is given minimum and maximum height values, but in the latest browsers it will auto-size according to the aspect ratio set in the viewBox attribute. The shape-rendering: crispEdges setting turns off anti-aliasing of vector graphics, which otherwise could make the grid lines appear blurred.

	[image: 3]

	The rectangles with class grid will by default have no fill. Thanks to the pointer-events setting, they will not be interactive, whether filled or not.

	[image: 4]

	When the grid4 or grid9 classes are set on a parent element, the grid rectangle is set to be filled with the appropriate pattern, identified with a matching id.

The end result is functional, but it is not ideal. The grid lines use a 4px stroke width, but half of that width is always cropped off, because they are centered over the edge of the pattern tiles. This means that the grid lines are visible on the top and left sides of the rectangle, but not on the bottom right. The intersections therefore don’t quite match the geometric halves or thirds of the photograph’s width or height.

There is no simple way to fix this with SVG patterns. When using object bounding box units for the tile size, you cannot offset the tile by a fixed number of pixels to compensate for the imbalance, because x and y are also interpreted in bounding box units. And because the grid lines are drawn in user-space units, there is no way to position additional lines on the opposite sides of each tile.

Stretching to Fit

There are very few pattern designs that work well with the default of objectBoundingBox units for the pattern tile and userSpaceOnUse units for the content. For patterns other than thin stripes or grids, you usually want the graphics to scale to match the pattern tile. In other words, you want both attributes, patternUnits and patternContentUnits, to have the same value, either objectBoundingBox or userSpaceOnUse.

Tip

Due to the mismatched defaults, you normally only need to declare one or the other, not both. Either set patternUnits = "userSpaceOnUse" or else set patternContentUnits = "objectBoundingBox".

When both the pattern tile and its contents scale relative to the object bounding box, you create a pattern that adjusts to fit the shape being filled. There are always the same number of tiles in each box, but the entire tiled pattern scales up and down together.

When using object bounding box units like this, keep in mind the lessons from Chapter 7 about the distorting effect of the coordinate system. If the box is not square, the coordinate system will be non-uniform with horizontal and vertical units of different lengths. Circles, text, and images will all be stretched and rotational angles will be uneven. Also note that everything is scaled according to the new units, including stroke widths and font size.

Furthermore, for patternContentUnits, unlike for the pattern tile dimensions, percentages are not interchangeable with decimals. Instead, the definition of 100% from the user space coordinate system is scaled up proportional to the scaling effect on all other units.

Tip

No matter what scaling method you use, percentages in the pattern content do not refer to the pattern tile.

If the main viewport was 200 units wide (1% is 2 horizontal units) and 150 units high (1% is 1.5 vertical units), 1% will now be twice the box width and 1.5 times the box height in the scaled coordinate system. Inside a different SVG, the ratios would be different.

This is not particularly useful, so percentages are best avoided when using object bounding box units for pattern contents.

What you can use are decimal numbers, knowing that they are always a proportion of the bounding box’s height or width. Example 10-3 uses this approach to adapt Example 10-1. The colored stripes now scale in width as well as spacing to fit in the different shapes, as shown in Figure 10-3.

[image: scpg 1003]
Figure 10-3. Shapes filled with a bounding box scaled repeating stripes pattern

Example 10-3. Filling shapes with a scaled repeating stripes pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" >
 <title xml:lang="en">Bounding Box Striped Pattern</title>
 <style type="text/css">
 svg {
 stroke-width: 6px;
 }
 </style>
 <pattern id="stripes2" x="5%" width="10%" height="100%"
 patternContentUnits="objectBoundingBox"
 stroke-width="0.025px" > [image: 1]
 <line x1="0.0125" x2="0.0125" y2="1" stroke="maroon" />
 <line x1="0.0375" x2="0.0375" y2="1" stroke="gold" /> [image: 2]
 <line x1="0.0625" x2="0.0625" y2="1" stroke="tomato" />
 </pattern>

 <g stroke="royalBlue" fill="url(#stripes2)">
 <rect x="0.1in" y="0.1in" width="3.8in" height="1in" />
 <ellipse cx="50%" cy="2.1in" rx="1.2in" ry="0.8in" />
 </g>
</svg>

	[image: 1]

	The pattern explicitly sets patternContentUnits to match the default for patternUnits. The pattern contents will inherit a stroke-width of 0.025px, which will be interpreted in the objectBoundingBox scale.

	[image: 2]

	The coordinates of the lines have similarly been transformed into object bounding box units. The lines are spaced 0.025 units apart, with the first line centered half that width from the edge of the pattern tile. The three lines plus an equal-sized gap therefore add up to 0.1 units, or 10% of the bounding box width, the exact width of each pattern tile.

When using decimal bounding box units, it is usually easiest to work solely within the mathematical user units, and not bother with units, which will be divorced from their real-world meaning. However, you can use units, and they will be measured proportional to user unit scale, as demonstrated by the stroke-width value.

Warning

Although px units should always be interchangeable with SVG user units—in any coordinate system—Firefox (version 40) rounds up the stroke-width when it is specified as 0.025px, to 0.03 units. It renders the stroke correctly if specified as 0.025, without units.

There is an alternative to using progressively smaller decimal numbers for coordinates. The <pattern> element can take a viewBox attribute to define your own coordinate system for each tile. We will explore viewBox patterns—and more uses of object bounding box patterns—in Chapter 11, which focuses on creating fill content that fills up the entire bounding box in a single tile.

For repeating tiles, however, it’s more likely that you will use userSpaceOnUse units.

Laying Tiles

With userSpaceOnUse units for both patternUnits and (by default) patternContentUnits, you create fixed-size tiles with a fixed-size graphic in each one. The result is something closer to the real-world concept of tiles, such as you might use to cover a floor or wall. The tiles don’t change between larger or smaller floor areas, only the number of tiles that can fit in that room.

Example 10-4 adapts the same striped pattern from Example 10-1, but this time keeps the fixed-size lines and adapts the tiles to match. Figure 10-4 shows the result.

[image: scpg 1004]
Figure 10-4. Shapes filled with a user-space repeating stripes pattern

Example 10-4. Filling shapes with a user-space repeating stripes pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" >
 <title xml:lang="en">UserSpace Striped Pattern</title>
 <style type="text/css">
 svg {
 stroke-width: 6px;
 }
 </style>
 <pattern id="stripes3" x="12px" width="24px" height="10px"
 patternUnits="userSpaceOnUse"> [image: 1]
 <line x1="3" x2="3" y2="10" stroke="maroon" />
 <line x1="9" x2="9" y2="10" stroke="gold" /> [image: 2]
 <line x1="15" x2="15" y2="10" stroke="tomato" />
 </pattern>

 <g stroke="royalBlue" fill="url(#stripes3)">
 <rect x="0.1in" y="0.1in" width="3.8in" height="1in" />
 <ellipse cx="50%" cy="2.1in" rx="1.2in" ry="0.8in" />
 </g>
</svg>

	[image: 1]

	This time, the pattern explicitly sets patternUnits to match the default for patternContentUnits. The pattern tile attributes have all been redefined in px units.

	[image: 2]

	The lines no longer have to stretch until 100% of the SVG height; because we know the tile size, we can draw the lines exactly to match.

The stripes in the rectangle and ellipse are not only the same size; they are also perfectly aligned. The x and y offsets for a user-space pattern tile are calculated relative to the main coordinate system’s origin, not the corner of the shape’s bounding box. Similar to the user-space gradients we explored in Chapter 7, this creates a continuous flow of paint from one shape to another—unless the shapes themselves are transformed!

With a consistent coordinate system for both the pattern tiles and pattern contents, it becomes possible to create patterns more complex than straight lines stretching to infinity. A circle can be centered in the tile, an icon can be sized to fit, or an <image> can be used to exactly fill the tile.

Nonetheless, when you want the pattern to continue smoothly from one tile to the next, like the vertical stripes in Figure 10-4, it is usually best to draw the graphics slightly larger than the pattern tile. In some SVG viewers, you can see the edges of each pattern tiles created by the code in Example 10-4 as either a too-dark or too-light edge, caused by the browser rounding the shapes to the pixel grid. Making each stripe extend from y1="-1" to y2="11" (instead of 0 to 10) can usually fix this; the ends of the lines are clipped at the point where they would overlap.

You can take advantage of this clipping effect to create patterns that do not, at first glance, follow a rectangular repeating tile. You can repeat shapes yourself, overlapping opposite sides of the tile, in such a way that when the tiles are placed side by side, the shapes appear to flow from one to the next.

Figure 10-5 shows a pattern of overlapping scales, like the scales of a tropical fish. Although the smallest repeating unit is a staggered, overlapping circle, you can create a simple rectangular repeating pattern by drawing a square from the center of one scale to the center of the next one directly to the side and directly below, as shown in the bottom half of the figure. Example 10-5 provides the code for the pattern, including the scaled up (if you’ll pardon the pun) version of the repeated unit.

[image: scpg 1005]
Figure 10-5. A scale pattern used to fill a rectangle (top) and its repeating tile unit (bottom)

Example 10-5. Creating a complex pattern with overlapping shapes

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="6.5in" viewBox="0 0 400 650">
 <title xml:lang="en">Fish Scale Pattern</title>
 <style type="text/css"><![CDATA[
 .scale {
 fill: url(#scale-gradient);
 stroke: black;
 }
]]> </style>
 <defs>
 <radialGradient id="scale-gradient"> [image: 1]
 <stop stop-color="#004000" offset="0"/>
 <stop stop-color="green" offset="0.85"/>
 <stop stop-color="yellow" offset="1"/>
 </radialGradient>
 <pattern id="scales-pattern" width="20" height="20"
 patternUnits="userSpaceOnUse" > [image: 2]
 <g id="scales">
 <circle class="scale" cx="0" cy="19" r="10"/> [image: 3]
 <circle class="scale" cx="20" cy="19" r="10"/>
 <circle class="scale" cx="10" cy="9" r="10"/> [image: 4]
 <circle class="scale" cx="0" cy="-1" r="10"/>
 <circle class="scale" cx="20" cy="-1" r="10"/> [image: 5]
 </g>
 </pattern>
 </defs>
 <rect width="400" height="400" fill="url(#scales-pattern)"/> [image: 6]
 <g transform="translate(200,525) scale(5) translate(-10,-10)">
 <use xlink:href="#scales" /> [image: 7]
 <rect width="20" height="20" fill="none"
 stroke="deepSkyBlue" stroke-width="0.5"/> [image: 8]
 </g>
</svg>

	[image: 1]

	A <radialGradient> is used to fill each scale in the pattern.

	[image: 2]

	The pattern itself uses userSpaceOnUse values for the patternUnits, meaning that the pattern tile will be 20px square regardless of the size of the shape being filled.

	[image: 3]

	The first two scales are centered almost at the bottom corners of the pattern tile.

	[image: 4]

	The next scale, which will be drawn overtop of the previous two, is nearly centered in the tile. However—to avoid clipping the edge of its stroke—it is shifted up by one unit, along with all the other circles.

	[image: 5]

	The final two scales are centered just above the top corners of the tile. They will overlap the middle tile, and will appear to be continuous with the bottom row of scales on the tile above them—and with each other on left and right.

	[image: 6]

	The rectangle in the upper half of the figure displays the scales as a continuous fill pattern.

	[image: 7]

	At the bottom of the figure, a <use> element duplicates the group of five scales. Thanks to the transform attribute on the <g> element, the scales are scaled up, by a factor of 5, and then offset so the tile is centered in the available space.

	[image: 8]

	The blue 20×20 rectangle, drawn in the same scaled-up coordinate system, outlines the boundaries of the pattern tile.

Most patterns can be constructed in this way, but it may require a little extra math to figure out the dimensions. It helps to sketch out the final appearance of a block of pattern, from which you can identify the positions at which the pattern repeats in exact horizontal and vertical shifts. This then becomes the bounds of your pattern tile.

Repeating Background Images

In CSS layout, repeating patterns can be created using background images. The pattern contents can therefore be created from any valid CSS image datatype: a raster image, an SVG image, or a CSS gradient. By default, the image is repeated horizontally and vertically to create a tiled effect similar to an SVG pattern.

Originally, CSS background images were always drawn at the intrinsic size of the image. Similar to a user-space pattern, changing the size of the element with the background would change the number of repeats, not their scale. This wasn’t particularly useful for large image backgrounds which should scale to fit the element, and it wasn’t useful at all for gradients (and some SVG images) that do not have an intrinsic size. The CSS Backgrounds and Borders Module Level 3 introduced the background-size property that allows each background image to be scaled to either a fixed size or a percentage of the element.

There are a few advantages to CSS backgrounds compared to SVG patterns:

	
Backgrounds can be set to only repeat in one direction or the other (or not at all) using the background-repeat property.

	
The background-size property accepts auto values to allow the height or width of the pattern tile to scale to match the other value and the content’s intrinsic aspect ratio.

	
Backgrounds can be layered, with each layer having its own size and repeat options.

As mentioned a few times already, layered paint server fills will become an option for SVG 2. We’ll show how they can be imitated, with composite patterns, in Chapter 11. Controlled repeat can be imitated by creating pattern tiles that are taller or wider than the object bounding box.

The main disadvantage of using CSS backgrounds to create a patterned effect is that the pattern contents must be in a separate image file (or encoded as a data URI), unless they can be represented as gradients. Although gradients can be used to create blocks and stripes, the rendering quality on some browsers is significantly poorer than SVG shapes.

Transformed Tiles

In the previous section, we showed how you can create non-rectangular patterns by including intricate repeats within each pattern tile. For certain geometric patterns, however, you can simplify your code by using coordinate system transformations to achieve the same effect.

The patternTransform attribute allows you to rotate, skew, scale, and translate a pattern. The transformation does not only apply to the pattern’s contents, however: it applies to the entire pattern tile, and to the repeating pattern of tiles laid end to end.

Tip

As with gradientTransform, the CSS Transformations Module redefines patternTransform as a presentation attribute synonym for the transform style property—although it isn’t yet supported in browsers.

Pattern transformations make it easy to create diagonal lines and other angled patterns, without having to use trigonometry to figure out the exact horizontal or vertical distance between the line repeats. Example 10-6 uses a 45° rotation to create bias-cut pinstripe and grid patterns. The example also demonstrates more ways to use one pattern as a template for another. Figure 10-6 shows the result.

[image: scpg 1006]
Figure 10-6. Pinstriped patterns, before and after rotational transformations

Example 10-6. Creating diagonal patterns with patternTransform

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="4in" viewBox="0 0 400 400">
 <title xml:lang="en">Pinstripe Patterns</title>
 <defs fill="#444" stroke="lightSkyBlue"> [image: 1]
 <pattern id="pinstripe" patternUnits="userSpaceOnUse"
 width="30" height="30"> [image: 2]
 <rect id="r" width="30" height="30"
 stroke="none" />
 <line id="l" x1="15" y="0" x2="15" y2="30"
 fill="none" />
 </pattern>
 <pattern id="diagonals" xlink:href="#pinstripe"
 patternTransform="rotate(45)" /> [image: 3]
 <pattern id="grid" xlink:href="#pinstripe">
 <use xlink:href="#r" /> [image: 4]
 <use xlink:href="#l" />
 <use xlink:href="#l" transform="rotate(90, 15, 15)"/>
 </pattern>
 <pattern id="diagonal-grid" xlink:href="#grid"
 patternTransform="rotate(45)" /> [image: 5]
 </defs>

 <rect width="200" height="200"
 fill="url(#pinstripe)" />
 <rect width="200" height="200" x="200"
 fill="url(#diagonals)" />
 <rect width="200" height="200" y="200"
 fill="url(#diagonal-grid)" />
 <rect width="200" height="200" x="200" y="200"
 fill="url(#grid)" />
</svg>

	[image: 1]

	The four patterns use the same color scheme, here set on the <defs> element. Patterns and other paint servers inherit styles from their surroundings, the same as shapes do.

	[image: 2]

	The core pinstripe pattern tile consists of a solid-filled square, with a vertical line stroked down its center. The tile will be a fixed size relative to the user-space coordinate system.

	[image: 3]

	The diagonals pattern duplicates the first pinstripe pattern, but rotates it by 45° to create diagonal lines.

	[image: 4]

	The grid pattern also uses the pinstripe pattern element as a template for the attributes on the pattern element, but it replaces the pattern contents with a copy of the solid rectangle and two copies of the line, rotated at 90° to each other. As with gradients, if the <pattern> has any child content, it replaces all the content from the template.

	[image: 5]

	The final pattern duplicates and rotates the grid pattern.

Example 10-6 also emphasizes how patterns and their contents inherit styles as normal based on their position in the document tree. Patterns do not inherit styles from the element being filled by the pattern.

Warning

The combination of xlink:href pattern templating and pattern style inheritance suggests that you can create color variations of a pattern by changing the inherited styles, similar to how you can create color variations of an icon by setting styles on a <use> element. Unfortunately, the drafters of the SVG specifications did not consider this possibility, and no browsers tested have implemented it this way.

However, neither do the specifications specifically say that duplicated pattern content shouldn’t inherit from the new pattern, so it might change in the future. For now, ensure that all inherited styles are the same on both the original and duplicate pattern elements.

Diagonal lines such as these could also be created with object bounding box pattern tiles, although the lessons from the section “Gradients, Transformed” still apply. Object bounding box units add their own transformation, which distorts rotational angles. A 45° rotation would create lines that follow the diagonal of the bounding box, whether or not that is a 45° angle in an absolute sense.

Shorthand Hatch Patterns

SVG 2 introduces a new type of paint server element that will greatly simplify the creation of stripe patterns like those from Example 10-6. Called hatches, they are also intended to remove the possibility of having discontinuities (caused by rounding errors) at the edges of pattern tiles. Instead of tiles repeated in both directions, hatches would consist of strips. The strips would tile like patterns in one direction, but they would consist of a continuous path, infinitely long, in the other. Each path would have repeating segments, but it would be painted smoothly as a single element.

A hatch pattern would be defined by a <hatch> element, which takes the following attributes:

	
x and y (offsets defining the position of the first strip)

	
pitch (the spacing between strips)

	
rotate (the angle of the strips)

	
hatchUnits and hatchContentUnits (one of userSpaceOnUse or objectBoundingBox, with defaults the same as patterns)

	
transform (equivalent to patternTransform)

	
xlink:href (a reference to another <hatch> element to use as a template)

The hatch element would contain <hatchPath> elements, each of which defines a line or path to be drawn. By default, the path would be a straight vertical line (subject to any transformation on the parent <hatch>). However, you could also use a d attribute to provide a segment of a path definition: the path instructions you specify would be concatenated indefinitely. The following would therefore create a pattern of infinite wavy lines:

<hatch hatchUnits="userSpaceOnUse" pitch="6">
 <hatchPath stroke-width="1"
 d="c 0,4 8,6 8,10 8,14 0,16 0,20"/>
</hatch>

There is no option to create a background color for a hatch pattern; because of the new layered fill syntax, a background color can be specified when the hatch is used.

Using transformations, you can create pattern tile layouts where the tiles are parallelograms or diamonds instead of simple rectangles. For the most predicatable results, these patterns usually work best with userSpaceOnUse patterns. The uneven scale of object bounding box units might not play nice with the patternTransform values.

Figure 10-7 shows two geometric patterns that can be created through transformations of rectangular tiles. The code to create them is presented in Example 10-7.

[image: scpg 1007]
Figure 10-7. Triangular and argyle patterns created using transformed pattern tiles

Example 10-7. Creating triangular and diamond patterns with patternTransform

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="6.5in" viewBox="0 0 400 650">
 <title xml:lang="en">Transformed Patterns</title>
 <pattern id="triangles" patternUnits="userSpaceOnUse"
 width="20" height="17.32"
 patternTransform="skewX(30)"> [image: 1]
 <rect width="30" height="20" fill="lightGreen" />
 <polygon points="0,0 20,0 0,17.32" fill="forestgreen" /> [image: 2]
 </pattern>
 <pattern id="argyle" patternUnits="userSpaceOnUse"
 width="20" height="20"
 patternTransform="scale(2,4) rotate(45)"> [image: 3]
 <rect fill="mediumPurple" width="20" height="20"/>
 <rect fill="indigo" width="10" height="10"/> [image: 4]
 <rect fill="navy" width="10" height="10"
 x="10" y="10"/>
 <path stroke="lavender" stroke-width="0.25" fill="none"
 d="M0,5 L20,5 M5,0 L5,20
 M0,15 L20,15 M15,0 L15,20" /> [image: 5]
 </pattern>

 <rect width="400" height="325" fill="url(#triangles)" />
 <rect width="400" height="325" y="325"
 fill="url(#argyle)" />
</svg>

	[image: 1]

	The first pattern uses a 30° skew to turn the pattern tiles into parallelograms. The height of each tile is scaled to equal the height of an equilateral triangle that has a base equal to the width of the pattern tile.

	[image: 2]

	As a result, the <polygon> triangle that fills the top left corner of the untransformed tile becomes a perfect equilateral triangle after the 30° skew.

	[image: 3]

	The second pattern uses a nonuniform scale and a 45° rotation to create diamond-shaped pattern tiles.

	[image: 4]

	A checked pattern is created by using two rectangles, each half the width and height of the tile, in opposite corners. The checks will be transformed along with the pattern tile, to create checked diamond shapes.

	[image: 5]

	The final element of the argyle pattern is a <path> that draws four separate straight lines, bisecting each of the diamond checks.

Both of the patterns in Example 10-7 do repeat horizontally and vertically, and could have been created without transformations. However, the pattern contents would have been more complex. More coordinates would need to be calculated with trigonometry, and there would be greater risk that rounding errors would introduce discontinuities between adjacent tiles.

Complex Repeating Patterns

CSS background images cannot be transformed separately from the shape to which they are attached. To create patterns like those in Figures 10-6 or 10-7, you have two options:

	
Use a pseudoelement to contain the repeating background, setting its z-index so that it is behind the main content, and then giving it a transform property to apply the rotations, skew, or scale. Be sure that the pseudoelement is set to block display and is larger than its parent (so that the transformation does not reveal any empty spots), and also be sure that the parent is set to hide any overflow.

	
Draw a larger section of the background, calculated to exactly match the amount of repetition in the horizontal and vertical directions, and include the transformation effects in each background tile. This is similar to the approach used to create the overlapping fish scales pattern in Example 10-5.

Chapter 1. Things You Should Already Know

This book is written with the assumption that you already know something about SVG, web design in general, and maybe even a little JavaScript programming.

However, there are always little quirks of a language that some people think are straightforward while other, equally talented, developers have never heard of. So this chapter gives a quick review of topics that you might want to brush up on—if you don’t already know them.

SVG Is Drawing with Code

An SVG is an image file. It is perfectly possible to only use it as an image file, the same way you would use other image formats, such as PNG or JPEG. You can create and edit an SVG in a visual editor. You can embed it in web pages as an image.

But SVG is more than an image. It is a structured document containing markup elements, text, and style instructions. While other image formats tell the computer which color to draw at which point on the screen, SVG tells the computer how to rebuild the graphic from its component parts. That has two main consequences:

	
The final appearance of an SVG depends on how well the software displaying it follows the SVG instructions. Cross-browser compatibility is often a concern.

	
It is easy to edit parts of an SVG—to add, remove, or modify particular pieces—without changing the rest. You can do this in your editor, but you can also do it dynamically in your web browser to create animated or interactive graphics.

SVG Is Always Open Source

Not only is an SVG a set of coded instructions for a computer, it is also a human-readable text file. You can edit your SVG in a text editor. Even better, you can edit SVG in a code editor with syntax highlighting and autocomplete!

The examples in this book all focus on the basic SVG code. You can, of course, use a visual editor to draw shapes, select colors, and otherwise fuss with the appearance of your graphic. But for full control, you will need to take a look at the actual code that the editor creates.

SVG Is XML (and Sometimes HTML)

The SVG code you view in your text editor looks an awful lot like HTML code—full of angle brackets and attributes—but a standalone SVG file is parsed as an XML document. This means that your SVG can be parsed and manipulated by tools meant for XML in general. It also means that your web browser won’t display anything if you forget to include the XML namespaces or mix up an important detail of XML syntax.

Nonetheless, when you insert SVG code directly in HTML 5 markup, it is processed by the HTML parser. The HTML parser forgives errors (like missing closing tags or unquoted attributes) that would halt the XML parser (or most SVG-only graphics editors). But it also ignores any custom namespaces, downcases any unrecognized attribute or tag names, and otherwise changes things up in ways you might not expect.

SVG Is Squishable

The syntax for SVG was—for the most part—designed to make it easy to read and understand, not to make it compact. This can make certain SVG files seem rather verbose and redundant. However, it also makes SVG very suitable for gzip compression, which should always be used when serving SVG on the Web. It will usually reduce file sizes by more than half, sometimes much more. If storing a gzipped SVG on a regular file server, it is typical to use the .svgz extension.

SVG is also bloatable, which makes it squishable in another way. Most SVG editors add their own elements and attributes to an SVG file by giving them unique XML namespaces. A class of optimization tools has developed that will strip out code that does not affect the final result. Just be careful about the settings you use—optimizers can remove attributes you might want later if you’re manipulating the code yourself!

Pictures Are a Collection of Shapes

So what does all that code represent? Shapes, of course! (And text and embedded images, but we’ll get to those in a moment…) SVG has only a few different shape elements: <rect>, <circle>, <ellipse>, <line>, <polyline>, <polygon>, and <path>. Nonetheless, those last three can be extensively customized to represent any shape you can imagine, to a certain degree of precision. The <path>, in particular, contains its own coded language for describing the curves and lines that create that shape.

Images Can Have Images Inside Them

Each SVG is an image, but it is also a document, and that document can contain other images, using the <image> element. The embedded images could be other SVG files, or they could be raster images such as PNG or JPEG. However, for security and performance reasons, some uses of SVG prevent those external images (and other external resources such as stylesheets or fonts) from being downloaded. In particular, external files will not be used when an SVG is displayed as an embedded image (element) or background image in an HTML page.

Text Is Art

The final building block used in SVG is text. But text isn’t an alternative to graphics—the letters that make up that text are treated like another type of vector shape. Importantly for this book, text can be painted using the exact same style properties as vector shapes.

Art Is Math

The core of all vector graphics (shapes or text) is that the end result can be defined using mathematical parameters (the XML attributes) to the browser’s SVG rendering functions for each element. The most pervasive mathematical concept in SVG is the coordinate system, used to define the position of every point in the graphic. You can control the initial coordinate system by setting a viewBox attribute, and you can use coordinate system transformations to shift, stretch, rotate, and skew the grid for certain elements.

An SVG Is a Limited View of an Infinite Canvas

There are no limits on the coordinates you can give for your vector shapes, except for the practical limits of computer number precision. The only shapes displayed, however, are those that fit within the particular range of coordinates established by the viewBox attribute. This range of coordinates is scaled to fit the available area (the “viewport”), with accommodations for mismatched aspect ratios controlled by the preserveAspectRatio value.

You can create nested viewports with nested <svg> elements or reused <symbol> elements; in addition to providing regions of aspect ratio control, these redefine how percentage lengths are interpreted for child content. Other elements use viewBox to create a scale-to-fit effect (as we’ll see when we get to the <pattern> element in Chapter 11), although without re-defining percentages.

SVG Has Structure

The structure of an SVG includes the basic shapes, text, and images that are drawn to the screen, and the attributes that define their geometry. But SVG can have more structure than that, with elements grouped into logical clusters. Those groups can be styled and their coordinate systems transformed. But they can also be given accessible names and descriptions to help explain exactly what the graphics represent.

SVG Has Style

SVG graphics can consist solely of XML, with all style information indicated by presentation attributes. However, these presentation styles can also be specified with CSS rules, allowing styles to be assigned by class or element type. Using CSS also allows conditional styles to depend on media features or transient states such as :hover or :focus.

The strict separation between geometric structure (XML attributes) and presentation style (presentation attributes or CSS style rules) has always been a little arbitrary. As SVG moves forward, expect the divide to collapse even more. The SVG 2 draft specifications upgrade many layout attributes to become presentation attributes. This opens these properties to all the syntactic flexibility CSS offers: classes of similar elements can be given matching sizes with a single style rule, and those sizes or layout can be modified with CSS pseudoclasses or media queries.

Behind All Good Markup Is a Great DOM

The SVG markup and styles are translated into a document object model (DOM) within a web browser. This DOM can then be manipulated using JavaScript. All the core DOM methods defined for all XML content apply, so you can create and re-order elements, get and set attributes, and query the computed style values.

The SVG specifications define many unique properties and methods for SVG DOM elements. These make it easier to manipulate the geometry of a graphic mathematically. Support for SVG DOM in web browsers is not as good as one might hope, but certain methods—such as determining the length of a curved path—are indispensable for SVG designs.

SVG Can Move

In a dynamic SVG viewer (e.g., a web browser) with scripting support, you can use those scripts to create animated and interactive graphics. However, SVG also supports declarative means of interaction, whereby you define the scope of an entire interaction and the browser applies it with its own optimizations. There are two means of doing this:

	
Using animation elements in the markup, with a syntax borrowed from the Synchronized Multimedia Integration Language (SMIL)

	
Using CSS animations and transitions of presentation styles

At the time of writing, scripted animation is supported in all web browsers, but may be blocked for certain uses of SVG. Declarative animation (SMIL and CSS) is supported in most browsers, but not all (Internet Explorer being the most notable exception). In addition, browsers are starting to implement the new Web Animations API, which allows a script to define and trigger an animation that will then be run independently, similar to a declarative animation.

SVG Can Change

Not only can individual SVG graphics change as you interact with them, but the definition of SVG can change too. The established standard (at the time this book was written) is SVG 1.1, but work is ongoing to develop a level 2 SVG specification with new features and clearer definitions of some existing features. Furthermore, because SVG uses CSS and JavaScript, and because it is heavily integrated in HTML, it inherits changes to those languages as well.

SVG Colors, Patterns & Gradients

 by
 Amelia
 Bellamy-Royds and
 Kurt
 Cagle

Copyright © 2016 Amelia Bellamy-Royds and Kurt Cagle. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editor: Meg Foley

		Production Editor: Colleen Lobner

		Copyeditor: Jasmine Kwityn

		Proofreader: James Fraleigh

		Indexer: Amelia Bellamy-Royds

		Interior Designer: David Futato

		Cover Designer: Ellie Volckhausen

		Illustrator: Rebecca Demarest

		October 2015: First Edition

Revision History for the First Edition

		2015-10-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491933749 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SVG Colors, Patterns & Gradients, the cover image of a Tibetan blood pheasant, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-93374-9

[LSI]

Chapter 5. Serving Paint

When the fill or stroke is more complicated than a single color (transparent or otherwise), SVG uses a concept called a paint server to describe how the graphic is rendered.

The paint servers are defined using their own SVG elements. Those elements—gradients and patterns—do not directly create any visible graphics. They are only used through the fill and stroke properties of shapes and text. However, by using XML markup to define the paint server, it can be infinitely variable: any SVG graphics can be used to generate an SVG pattern, including other patterns!

In contrast, when using CSS to style HTML content, all the information about how to paint an element must be contained within the CSS style rules. In CSS 2.1, the only way to create patterns was to reference external image files. Since then, CSS has introduced many graphical effects that were previously only possible with SVG, such as gradients and improved image positioning. Although the end result may look similar, the all-CSS syntax for these properties is quite different from their SVG equivalent. Throughout the rest of the book, the two approaches will be compared in “CSS Versus SVG” sidebars.

This chapter introduces the basic paint server model, and then demonstrates how it can be used in the simplest case, to serve up a single color of paint.

Paint and Wallpaper

A key feature of all SVG paint servers is that they generate a rectangular region of graphical content. This can be limiting at times, but it allows for underlying performance optimizations.

An SVG paint server doesn’t need to know anything about the shape it is told to fill—it just slops on paint indiscriminately all over the wall. The shape itself acts as a mask or stencil that blocks off which parts of the paint actually reach the drawing, in the same way that a wall painter covers (masks) floorboards, ceilings, light fixtures, etc., so that only the wall gets painted.

Another way of thinking about paint servers—particularly when talking about gradients and patterns—is to picture the paint content as a large sheet of wallpaper. The shape is cut out from that sheet, as imagined in Figure 5-1.

[image: scpg 0501]
Figure 5-1. A filled shape can be thought of as a shape cut out of a rectangular sheet of patterned paper

The computer doesn’t use paper and scissors, of course; instead, as it rasterizes (scans across) the shape, for every point that is “inside” the filled region, the computer looks up the corresponding (x,y) point from the paint server. A paint server can therefore be any object that can assign a specific color value to each (x,y) value.

In theory, the “paint” could be anything: a single color, one or more gradients, repeating patterns, bitmap graphics, text, even other SVG files. In practice, SVG 1.1 has two types of paint servers, gradients and repeating patterns. However, those core elements can be used to create all of the options just mentioned, as the rest of the book will demonstrate.

Identifying Your Assets

The name “server” suggests an external source for multiple resources. Theoretically, you can create a separate asset file containing all your paint servers and reference it from the fill or stroke property, but this currently has poor browser support. More generally, the name paint server refers to the fact that each gradient or pattern object can serve paint (rendering instructions) to multiple SVG shapes.

Warning

At the time of writing, external paint servers are only supported in Firefox and in pre-Blink versions of Opera that use the Presto rendering engine.

In order to use a paint server, you reference the paint server element using URL syntax, wrapped in the CSS url() functional notation. Because of the browser support limitation, this URL is nearly always an internal reference like url(#myReference). The hash mark (#) indicates that what follows is a target toward a specific element; the fact that there is nothing before the hash mark indicates that the browser should look for that element in the current document. Specifically, it should look for an element with an id attribute that matches the target fragment (i.e., <pattern id="myReference">).

Thus, referencing a paint server with an ID of "customBlue" as a fill could look something like:

<rect fill="url(#customBlue)" width="100" height="100"/>

Because fill is a presentation attribute, you could also use a <style> block elsewhere in the document to set the value:

rect {
 fill: url(#customBlue);
}

The preceding rule would set all rectangles in the document to use that paint server, provided that the style wasn’t overridden by more specific CSS rules.

Relative URLs in external stylesheets are always relative to the CSS file location, not the location of the document using those styles. This includes local URL fragments like #customBlue, which will never match anything if specified in an external CSS file. In combination with the lack of support for external paint servers, this unfortunately means that you cannot effectively use external stylesheets to set paint server references.

Tip

Relative URLs are also affected by the xml:base attribute or the HTML <base> element; using either can cause your paint server references to fail.

In theory (or if you only need to support Firefox), if you had a set of colors that are predefined in a file called brand.svg, you could provide the relative path to that resource, then use the target fragment to point to the specific element:

<rect fill="url(brand.svg#customBlue)"
 width="100" height="100"/>

Or you could even provide the absolute URI to that same resource—assuming the external file could be securely accessed from your web domain:

<rect fill="url(//example.com/assets/brand.svg#customBlue)"
 width="100" height="100"/>

The lack of support for this option is unfortunate, because the server concept can be thought of as being just another form of asset library, a way of storing commonly used colors, gradients, patterns, masks, and other resources in a single file. For now, if you have paint servers that are used by multiple SVGs, you need to incorporate them directly in each document, either by using some pre-processing on your server or by using AJAX techniques to import them with client-side JavaScript.

Because numerous things might interfere with the ability to load an external resource—even separate from browser support—the SVG fill and stroke properties allow you to specify a fallback color value. The color is given after the url() reference, separated by whitespace, like the following:

rect {
 fill: url(brandColors.svg#customBlue) mediumBlue;
}

Or, using presentation attributes and hex color syntax:

<rect fill="url(brandColors.svg#customBlue) #0000CD"
 width="100" height="100"/>

If the referenced paint server cannot be loaded, the rectangles will be painted with the specified solid blue color.

Layered Fill Paint and Fallbacks

SVG 2 introduces layered fills or layered strokes, similar to how CSS box layout supports layered background images.

As with multiple background images, the multiple paint options will be specified using a comma-separated list of layers from top to bottom. A fallback color will still be allowed, at the end of the list, separated by whitespace.

Unlike with the CSS background shorthand—which sets both the list of background-image values and the single background-color value—that final color would not normally be drawn underneath the other layers.

A sample declaration would look something like the following:

.typeA {
 fill: url(#pattern1), url(#gradient) mediumBlue;
}
.typeB {
 fill: url(#pattern2), url(#gradient) darkSeaGreen;
}

If the paint servers are loaded correctly, the typeA and typeB graphics would be distinguished by different patterns layered overtop of the same gradient. If the paint servers could not be found (perhaps your AJAX script did not run successfully), then the two classes would be drawn with different solid colors.

If you did want a solid color to be drawn underneath a pattern or gradient, you would separate the color into its own layer using a comma:

.typeA {
 fill: url(#pattern), mediumBlue;
}
.typeB {
 fill: url(#pattern), darkSeaGreen;
}

In this case, both classes of graphics use the same pattern (which maybe adds a textured effect), but layered over different solid colors.

The Solid Gradient

Oftentimes, especially when working with commercial uses of color, a designer will give that color a specific name. The same color may show up in many graphics related to the brand: different versions of the company logo, heading text, product labels, and so on. Rather than having to keep a list of RGB values for each color, it is much easier to define them once, give them a name, and then use that name in the content. This also makes it much easier if you decide to change one of the colors later on in the design process!

An SVG paint server is ideally suited for this task. It can be referenced by ID in the fill or stroke properties of multiple graphics, but the actual color value is only specified once and can be easily updated (or animated, as we’ll show in Chapter 14).

The original SVG specifications did not explicitly include a solid color paint server, but all browsers allow you to use a gradient with a single, un-changing color to this effect. Example 5-1 demonstrates this strategy; it uses <linearGradient> elements to define four named colors that are used in the branding strategy for the fictional company ACME. The colors are then used to draw a company logo, which is shown in Figure 5-2.

[image: scpg 0502]
Figure 5-2. ACME Logo using named colors

Example 5-1. Defining named colors for consistent branding using single-color gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xml:lang="en"
 width="100mm" height="50mm"> [image: 1]
 <title>ACME Logo</title>
 <defs>
 <linearGradient id="AcmeRed"> [image: 2]
 <stop stop-color="#FF4022" />
 </linearGradient>
 <linearGradient id="AcmeMaroon">
 <stop stop-color="#80201C" />
 </linearGradient>
 <linearGradient id="AcmeGold">
 <stop stop-color="#FFFC32" />
 </linearGradient>
 <linearGradient id="AcmeWhiteGold">
 <stop stop-color="#FFFCE0" />
 </linearGradient>
 <symbol id="AcmeLogo" viewBox="0,-40 160,80" > [image: 3]
 <path d="M0,0 L40,-40 L40,-20 L160,-20
 L160,20 L40,20 L40,40z"
 fill="url(#AcmeRed)"/> [image: 4]
 <path d="M16,-10 L35,-29 L35,-15 L155,-15 L155,-10 z"
 fill="url(#AcmeGold)"/>
 <path d="M13,-7 L16,-10 L155,-10 L155,-7 z"
 fill="url(#AcmeMaroon)"/>
 <text x="40" y="15"
 style="font-family:Arial; font-weight:bold;
 font-size:20pt;"
 fill="url(#AcmeWhiteGold)">ACME</text>
 </symbol>
 </defs>
 <use xlink:href="#AcmeLogo" /> [image: 5]
</svg>

	[image: 1]

	The SVG does not have a viewBox; scaling is controlled by the <symbol> element that contains the logo. However, default width and height values ensure that the image has the correct intrinsic aspect ratio and a reasonable default size when embedded in other web pages.

	[image: 2]

	The company has four brand colors, AcmeRed, AcmeMaroon, AcmeGold, and AcmeWhiteGold. Each color is defined as a paint-server using a <linearGradient> with a single <stop> element.

	[image: 3]

	The logo itself is defined inside a <symbol> element for easy re-use in other graphics. The viewBox creates a coordinate system that is centered on the vertical axis.

	[image: 4]

	Each shape within the symbol uses one of the predefined paint servers to set the fill color.

	[image: 5]

	The logo is drawn within the SVG with a <use> element. The <use> element does not have any positioning or sizing attributes, so the reused <symbol> will scale to fill the entire SVG area.

Examining the gradients more closely, each consists of two elements, <linearGradient> and <stop>:

<linearGradient id="AcmeRed">
 <stop stop-color="#FF4022" />
</linearGradient>

The <linearGradient> defines the paint server, and gives it the id value that will be used to reference it. This gradient element is also a container for the <stop> element that defines the color. For a normal gradient, there would be multiple stops defining the initial, final, and intermediary colors.

The color is specified using the stop-color presentation attribute. There is also a stop-opacity presentation attribute, similar to fill-opacity or stroke-opacity; by default, colors are fully opaque.

Warning

Although Example 5-1 works as intended in every web browser tested, it fails in Apache Batik, which is more strict on syntax. To make it work, the <stop> elements also require an offset attribute, which we’ll discuss in “Gradiated Gradients”.

Because the colors are defined in a single location, they can be changed easily and consistently, or animated uniformly. Because stop-color is a presentation attribute, you don’t even need to edit the XML to change the color; you can override it with CSS rules.

As a result, you can use conditional CSS rules to change the color. A stylesheet with media queries can be used to assign print colors for high-quality printers, or for grayscale printing. Because the color is used by reference in the rest of the graphic, the stylesheet does not need to identify all the elements that use each color, nor does it need to distinguish between fill and stroke values.

Tip

Although stop-color is a presentation attribute, it is not inherited by default. It must be explicitly set on the <stop> element, either directly or by using the inherit keyword.

Example 5-2 gives a sample set of print styles. For color printing, it redefines the colors using HSL notation, which can then be mapped to the full color gamut used on the print device. For monochrome printing, it assigns each color to a shade of gray that will create stronger contrast than if the colors were converted to gray automatically. The grayscale version is shown in Figure 5-3.

[image: scpg 0503]
Figure 5-3. ACME Logo using named colors, converted to monochrome

Example 5-2. Redefining named colors for print graphics

@media print AND (color) {
 #AcmeRed stop { stop-color: hsl(10, 100%, 60%); }
 #AcmeMaroon stop { stop-color: hsl(0, 65%, 30%); }
 #AcmeGold stop { stop-color: hsl(60, 100%, 60%); }
 #AcmeWhiteGold stop { stop-color: hsl(55, 100%, 90%); }
}
@media print AND (monochrome) {
 #AcmeRed stop { stop-color: #555; }
 #AcmeMaroon stop { stop-color: #222; }
 #AcmeGold stop { stop-color: #DDD; }
 #AcmeWhiteGold stop { stop-color: #FFF; }
}

Warning

Although most browsers correctly apply CSS print styles when printing a web page, they do not always apply monochrome styles when the user chooses to print in black and white on a color printer.

Using paint servers to name nonstandard colors in this way has the additional advantage that it makes your code easier for others to read. By using meaningful id values, the color and purpose of each element becomes apparent to any programmer who has to adapt your work in the future.

The <solidcolor> Paint Server

Named color paint servers have many benefits. However, using a single-color gradient to create a named color is a bit of a hack; it certainly was not the original purpose of these elements.

SVG 2 therefore uses the <solidcolor> element to create a single-color paint server with no hackery. It uses the solid-color and solid-opacity presentation attributes to set the color value.

Using <solidcolor> elements, the four brand colors from Example 5-1 could be defined as follows:

<solidcolor id="AcmeRed" solid-color="#FF4022" />
<solidcolor id="AcmeMaroon" solid-color="#80201C" />
<solidcolor id="AcmeGold" solid-color="#FFFC32" />
<solidcolor id="AcmeWhiteGold" solid-color="#FFFCE0" />

This not only reduces the amount of markup, it also makes the purpose of your code more readily apparent.

The <solidColor> element (note the capital C!) was included in the SVG Tiny 1.2 specification, so it is supported in some graphics programs; you would need to explicitly set the version="1.2" attribute on the root <svg> element. (In contrast, web browsers ignore version and use the latest spec for all SVG content.) The latest draft SVG 2 specification changes the capitalization to make the element more HTML-friendly, which unfortunately breaks compatibility in case-sensitive XML viewers.

At the time of writing, neither <solidColor> nor <solidcolor> are supported in the stable version of any major web browser. However, an implementation is under development in Firefox.

Chapter 13. Painting Lines

The gradient and pattern examples so far have nearly all used the fill property to apply that paint to a shape. However, we mentioned early on in the book that paint servers can also be used for the stroke property.

Applying paint servers to strokes introduces new complexities, which is why we have separated the topic into its own chapter. We cover the difficulties here, but also give some examples of unique effects you can create with painted strokes. And we include teasers about some new features proposed for SVG 2 that will make this easier.

Beyond the Edges

Strokes, as we’ve briefly mentioned, do not have to use solid colors. The stroke property, like the fill property, can use a url() function to reference a paint server—a gradient or pattern—by its id value. You can also include a fallback color in case there is a problem with that paint server, and—as you’ll soon see—those fallback colors do get used.

It is when using paint servers that you are most strongly reminded that the stroke is really a secondary shape, built upon the element that defines it, and not a line drawn with a pen or brush. Patterns and gradients currently cannot be painted along the path; similar to when painting the fill of a shape, the stroke is cut out of wallpaper-like paint server content.

There are two main areas where designers tend to get frustrated when using paint servers for strokes:

	
The objectBoundingBox units used by paint servers do not include the stroke region.

	
All paint servers create a rectangle region of paint that is unaffected by the shape or direction of the stroke.

These complications aren’t always impenetrable obstacles. For many shapes, a gradient or patterned stroke works just fine. Example 13-1 uses the basic horizontal red-blue gradient from Chapter 6 to paint a thick-stroked rectangle, as displayed in Figure 13-1.

Example 13-1. Using gradients as stroke paint on a rectangle

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1.5in" >
 <title xml:lang="en">Gradient on a Stroke</title>
 <linearGradient id="red-blue" >
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </linearGradient>
 <rect width="80%" height="50%" x="10%" y="25%"
 stroke-width="20%" stroke="url(#red-blue)"
 fill="none" />
</svg>

[image: scpg 1301]
Figure 13-1. A rectangle stroked with a linear gradient

The gradient vector may be sized based on the rectangle’s geometric dimensions, rather than the stroke’s dimensions, but with a smooth gradient such as this it is hard to tell. If you change the spreadMethod to repeat, it becomes much more obvious, as shown in Figure 13-2. Half of the stroke on each side is beyond the gradient vector, in the repeat region.

[image: scpg 1302]
Figure 13-2. A rectangle stroked with a repeating linear gradient

Multiple Strokes

We have mentioned how SVG will allow you to layer multiple fills, to create multiple stacked gradients or patterns that accent an independently set solid color. The same possibility will also be supported with strokes, but with even greater potential. Because each stroke can have a different width or dash patterns, even solid-colored strokes can be effectively layered.

The exact details have not all been finalized at the time of writing, but SVG 2 will likely adopt a syntax similar to that used for CSS layered backgrounds. Any of the properties would be specifiable as a list of values, and if the list for one property was not as long as the list for the main (stroke) property, it would be repeated as necessary. So, if you wanted all the layers to have 0.5 opacity, you would only need to specify that value once.

Another new addition for strokes, similar to fill, would be to support CSS image data types—gradient functions and references to other image files—directly within the stroke property. As with SVG gradients, the result would be as if the stroke region was cut from a rectangle filled with the gradient, not a gradient that followed the direction of the stroke.

The sharp repeat edges in Figure 13-2 are not something you’re likely to create by accident. You therefore might assume that objectBoundingBox units are not a big obstacle after all. They aren’t, until you start stroking lines instead of shapes.

The Empty Box

Example 13-2 uses the same red-blue linear gradient to stroke a series of straight lines in different orientations. Because a straight line cannot be filled, using a thick gradient stroke is often a desired effect.

Example 13-2. Using gradients as stroke paint on straight lines

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="3in" >
 <title xml:lang="en">Gradient on Straight Lines</title>
 <linearGradient id="red-blue" >
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </linearGradient>
 <g fill="none" stroke-width="0.5in"
 stroke="url(#red-blue) purple" > [image: 1]
 <line x1="10%" x2="90%" y1="10%" y2="10%" /> [image: 2]
 <line x1="90%" x2="90%" y1="25%" y2="75%" />
 <line x1="90%" x2="10%" y1="90%" y2="90%" />
 <line x1="10%" x2="10%" y1="75%" y2="25%" />
 <line x1="30%" x2="70%" y1="25%" y2="75%" /> [image: 3]
 <line x1="70%" x2="30%" y1="25%" y2="75%" />
 </g>
</svg>

	[image: 1]

	Style properties are applied as presentation attributes on a group containing the individual lines. The stroke value includes both the reference to the gradient and a fallback solid color.

	[image: 2]

	The first four lines outline the drawing region: straight across the top, down the right side, back horizontally across the bottom, then vertically up the left.

	[image: 3]

	The final two lines are diagonal, one going down left to right and the other angled down right to left.

The code seems simple, but as Figure 13-3 shows, the result isn’t often what is desired.

[image: scpg 1303]
Figure 13-3. Lines stroked with a linear gradient—or its fallback color

Why are so many of the lines stroked in solid purple? Because pure horizontal or vertical lines have no bounding box region. And no bounding box region means no bounding box gradient. If we had not specified a fallback color, the strokes would not have been visible at all.

Instinctively, this seems rather extreme for gradients. After all, even if the horizontal lines do not have any height, they still have width. Shouldn’t that be enough for a horizontal linear gradient? And the vertical lines, couldn’t they at least be padded red on one side and blue on the other?

The difficulty comes from the way paint servers are implemented, as rectangular sheets of paint that are transformed to fit the bounding box. Transformations that result in any dimension collapsing to zero cause division-by-zero errors in the browser’s internal math. To avoid them, the SVG specifications treat zero-width or zero-height bounding boxes as an error for bounding box paint servers. The browser responds to the error the same way it would if it couldn’t find the paint server at all—by using the fallback color.

In contrast, the diagonal lines are painted with the gradient—even though the lines still have no fill region—because the bounding box is the tightest rectangle that can contain the object aligned with the coordinate system axes. For an angled line, that is the rectangle of which it is the diagonal. Although the two diagonal lines are drawn in opposite directions, they have the same bounding box, and so the gradient is continuous between the two.

When most people think of a gradient on a line, they are usually thinking of something more like Figure 13-4. Each gradient goes from one end of the line to the other, in the direction that the line is drawn.

[image: scpg 1304]
Figure 13-4. Lines stroked with linear gradients that match the line direction

As you probably guessed, Figure 13-4 can be created with SVG. However, it requires considerably more markup than Example 13-2. You cannot use gradients with object bounding box units, so you need to use a userSpaceOnUse gradient. Then you need to match the gradient vector to the position, direction, and length of the line.

There are two ways to do this. Example 13-3 shows the code used for Figure 13-4. It creates a separate <linearGradient> element for each <line>, and sets all the gradient vector positioning attributes to match the line’s positioning attributes.

Example 13-3. Matching linear gradients with straight lines

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" >
 <title xml:lang="en">Gradients Made to Measure
 for Straight Lines</title>
 <linearGradient id="red-blue"
 gradientUnits="userSpaceOnUse"> [image: 1]
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </linearGradient>
 <g fill="none" stroke-width="0.5in" > [image: 2]
 <linearGradient xlink:href="#red-blue" id="g1"
 x1="10%" x2="90%" y1="10%" y2="10%" /> [image: 3]
 <line x1="10%" x2="90%" y1="10%" y2="10%"
 stroke="url(#g1) purple"/> [image: 4]
 <linearGradient xlink:href="#red-blue" id="g2"
 x1="90%" x2="90%" y1="25%" y2="75%" />
 <line x1="90%" x2="90%" y1="25%" y2="75%"
 stroke="url(#g2) purple"/>
 <linearGradient xlink:href="#red-blue" id="g3"
 x1="90%" x2="10%" y1="90%" y2="90%" />
 <line x1="90%" x2="10%" y1="90%" y2="90%"
 stroke="url(#g3) purple"/>
 <linearGradient xlink:href="#red-blue" id="g4"
 x1="10%" x2="10%" y1="75%" y2="25%" />
 <line x1="10%" x2="10%" y1="75%" y2="25%"
 stroke="url(#g4) purple"/>
 <linearGradient xlink:href="#red-blue" id="g5"
 x1="30%" x2="70%" y1="25%" y2="75%" />
 <line x1="30%" x2="70%" y1="25%" y2="75%"
 stroke="url(#g5) purple"/>
 <linearGradient xlink:href="#red-blue" id="g6"
 x1="70%" x2="30%" y1="25%" y2="75%" />
 <line x1="70%" x2="30%" y1="25%" y2="75%"
 stroke="url(#g6) purple"/>
 </g>
</svg>

	[image: 1]

	The basic gradient containing the color stops is used as a template. It has userSpaceOnUse set for gradientUnits, which will be inherited by the gradients that reference it.

	[image: 2]

	There’s no use setting the stroke value on the group; each element will need a separate stroke property referencing its custom-made gradient.

	[image: 3]

	The <linearGradient> elements each have an xlink:href attribute referencing the template gradient, a unique id, and x1, x2, y1, and y2 attributes that directly match those on the corresponding <line>.

	[image: 4]

	The lines each have the correct stroke gradient set as a presentation attribute. The fallback color is included just in case, but won’t be used unless we made a typo!

The main downside of the code in Example 13-3 is that it is rather repetitive. For example, the duplicated attributes between the <line> and <linearGradient> elements mean that you have to update everything twice if you want to reposition anything. However, this structure is quite effective if you’re using a data-based script to generate the lines in the first place. You could create a function that sets these attributes on an element based on the data, and then run it twice, once for the line and once for the gradient.

Tip

If your <line> elements make use of default values for some positioning attributes, remember that <linearGradient> has a different default for x2 (100% instead of 0).

Another limitation of the approach used in Example 13-3 is that it significantly increases the number of elements in your DOM. If you have a very large number of lines and gradients in a dynamic graphic, this could slow down your web page.

An alternative approach to aligning gradients and lines is to use a single gradient, and draw all your lines along it; then, use transformations to size and position the lines where you want them. We use this approach in Example 13-4. Because SVG 1.1 transformations must be specified in user units, not percentages, the drawing has been redefined with a viewBox and the numbers have been adjusted. As a result, the final SVG shown in Figure 13-5 is not an exact match for Figure 13-4, but it is close.

[image: scpg 1305]
Figure 13-5. Lines stroked with a gradient, then transformed into place

Example 13-4. Transforming lines drawn to match a linear gradient

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="4in" height="3in" viewBox="0 0 100 75"> [image: 1]
 <title xml:lang="en">Userspace Gradient on
 Transformed Straight Lines</title>
 <linearGradient id="red-blue" gradientUnits="userSpaceOnUse">[image: 2]
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </linearGradient>
 <g fill="none" stroke-width="12"
 stroke="url(#red-blue) purple" > [image: 3]
 <line x2="100%"
 transform="translate(10,7.5) scale(0.8,1)" /> [image: 4]
 <line x2="100%"
 transform="translate(90,18.75)
 rotate(90) scale(0.375,1)" /> [image: 5]
 <line x2="100%"
 transform="translate(90,67.5) scale(-0.8,1)" /> [image: 6]
 <line x2="100%"
 transform="translate(10,56.25)
 rotate(-90) scale(0.375,1)" />
 <line x2="100%"
 transform="translate(30,18.75)
 rotate(45) scale(0.5315,1)" />
 <line x2="100%"
 transform="translate(70,18.75)
 rotate(135) scale(0.5315,1)" />
 </g>
</svg>

	[image: 1]

	The viewBox uses a 100-unit width, so that the horizontal percentages can be directly converted to user unit values. However, vertical percentages will need to be scaled to the 70-unit height.

	[image: 2]

	There is only one gradient, which uses userSpaceOnUse units. The gradient vector uses the default arrangement: horizontally from 0 to 100%.

	[image: 3]

	A single stroke value is applied to the group containing all the lines. Again, the fallback color is only just-in-case; the user-space gradient should always provide valid results.

	[image: 4]

	Each <line> element has the exact same positioning attributes: a single x2="100%" to match the default attributes on the <linearGradient>. The actual size and position of the line is controlled by the transform attribute.

	[image: 5]

	The transformations are arranged in a particular order that ensures they do not interact in unexpected ways: first, the origin (and start of the line) is translated into place, then it is rotated into the correct orientation, and finally it is scaled along its length (which is the x-axis in its transformed coordinate system).

	[image: 6]

	As an alternative to a 180° rotation, the right-to-left gradient is created with a negative x-scaling factor.

With this approach, you do not create any extra elements. However, you must completely redefine the geometry of the graphic. If you know in advance that the gradients are an essential part of your graphic, and can plan ahead, this might not be a big obstacle. In contrast, rewriting a graphic like this—converting code that was defined with positioning attributes to use transformations instead—is usually more hassle than it’s worth.

Creating a Stroke Bounding Box

As you have surely gathered by now, one of the greatest limitations of using paint servers for strokes is that the object bounding box does not contain the stroke. One of the most anticipated changes in SVG 2 is the ability to specify a different bounding box that includes the stroke region.

The bounding box to use would be specified at the time the paint server is used, rather than on the pattern or gradient element. This would allow the same gradient or pattern to be used such that it exactly fit the fill bounding box, the stroke bounding box, or even the user space. However, these would still be “box” regions: rectangles aligned with the horizontal and vertical axes of the coordinate system. To create gradients that followed the direction of a line, you would still need the approaches in Examples 13-3 or 13-4. Gradients that actually follow the curvature of a line will require much deeper changes to the way SVG paint currently works, and aren’t expected in the short term.

The exact syntax for defining paint server reference boxes has not been finalized at the time of writing. However, it is expected to be definable either directly in the stroke (or fill) shorthand property or as a separate style property.

Using the Coordinate Space

User-space stroke gradients have more applications than as imperfect substitutes for gradients along a line. In data visualizations, they can be used to change the appearance of a data line according to its value. Example 13-5 demonstrates this effect. It creates a generic status monitor dashboard, with a line that marks a changing value that should not reach 100%: as the line gets closer to maximum, it turns from green to yellow to red.

The basic framework for the graphic—including the gradient—is defined in the markup, while the data is inserted via a script. In practice, the data would come from a web server of some sort; in the example, the data is randomly generated. Figure 13-6 shows one possible data pattern.

[image: scpg 1306]
Figure 13-6. A data chart using a stroked gradient to emphasize changing values

Example 13-5. Using a gradient to add information to a line chart

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="3in"
 xml:lang="en">
 <title>Stroked Gradient as Status Indicator</title>
 <svg x="0.6in" y="0.5in" width="3.6in" height="2in"
 viewBox="0 0 180 100"
 style="overflow: visible; font: 10px sans-serif;"> [image: 1]
 <linearGradient id="status" y1="100%" y2="0%" x2="0%"
 gradientUnits="userSpaceOnUse"> [image: 2]
 <stop stop-color="limegreen" offset="0.4"/>
 <stop stop-color="yellow" offset="0.8"/> [image: 3]
 <stop stop-color="red" offset="0.95"/>
 </linearGradient>

 <rect stroke="black" fill="dimGray"
 width="100%" height="100%" />
 <g text-anchor="end" dominant-baseline="middle"
 transform="translate(-2,0)"> [image: 4]
 <desc>Y-axis tick labels</desc>
 <text y="100">0%</text>
 <text y="80">20%</text>
 <text y="60">40%</text>
 <text y="40">60%</text>
 <text y="20">80%</text>
 <text y="0">100%</text>
 </g>
 <g text-anchor="middle">
 <text x="50%" dy="-1em" font-size="12px"
 text-decoration="underline"
 >Status monitor</text>
 <text x="50%" y="100%" dy="1em">Time</text>
 </g>

 <polyline id="dataline" stroke="url(#status)"
 stroke-linejoin="bevel"
 stroke-width="2.5" fill="none" /> [image: 5]
 </svg>
 <script><![CDATA[
(function(){
 var n = 19,
 dx = 10,
 maxY = 100; [image: 6]

 var data = new Array(n),
 points = new Array(n);
 for (var i=0; i<n; i++) {
 data[i] = [i, Math.random()];
 points[i] = [i*dx, maxY * (1 - data[i][1])]; [image: 7]
 }

 var dataline = document.getElementById("dataline");
 dataline.setAttribute("points", points.toString()); [image: 8]
})()
]]> </script>
</svg>

	[image: 1]

	A nested <svg> is used to create a user-space coordinate system that exactly matches the size of the data region in the chart. A viewBox applies a custom coordinate system, including a 100-unit height that will convert easily to percentage values.

	[image: 2]

	The <linearGradient> is drawn within a user-space coordinate system, with a vector that goes from bottom to top.

	[image: 3]

	The first 40% of the gradient is solid green; it then transitions through yellow until being solid red after 95%.

	[image: 4]

	A solid background fills the data region, while text labels are offset outside of the data region (which has visible overflow). By including the labels inside the nested SVG, they can be positioned using the viewBox coordinate system, even though they are printed outside of its width and height region.

	[image: 5]

	The data line is a <polyline> element. Its presentation styles—including the gradient stroke—are specified in the markup, but it does not have a points attribute, so will not be drawn until the script runs. An id attribute makes it easy to access from the script.

	[image: 6]

	Inside the script, a set of initialization variables control the scale between the data and the coordinate system: n is the number of data values that will fit in the graphic, dx is the horizontal spacing (in user units) between them, maxY is the number of vertical units into which the range (0%–100%) should be scaled to fit.

	[image: 7]

	The data array contains the raw data (here, an index number followed by a random value between 0 and 1). The points array contains the scaled coordinates for those data points, using the control variables to scale the data and invert the y-coordinates, so that 0% is at the bottom and 100% is at the top.

	[image: 8]

	The points array-of-arrays is converted to a comma-separated string with its default toString() method, and used as the points attribute of the polyline.

The key to effectively using a userSpaceOnUse gradient to convey data was to precisely control the user-space coordinate system to match the data region. Nested coordinate systems allowed the viewBox to exactly match the data region, while still leaving room outside it for the labels.

Warning

To correctly scale the gradient to the data region in Internet Explorer and WebKit/Blink browsers, the <linearGradient> must be a child of the nested SVG. As already mentioned, these browsers use the paint server’s parent coordinate system as the userSpaceOnUse instead of the one associated with the painted shape.

The visual effect of the user-space painted stroke is similar to having a continous rectangular gradient that is then masked by the line, to only show those regions. However, just as with the image-filled text we discussed in Chapter 11, there is an important structural difference between a gradient clipped to a line and a line painted with a gradient. If you have any interactive effects in your data graph, you want the line to be the object they interact with, not a mostly invisible rectangle.

Nonetheless, the effect need not be restricted to practical data graphics. You could also use a textured pattern or an image as the revealed content that shines through the stroked areas.

Patterned Lines

Patterned strokes work much the same way as gradient strokes. However, because patterns repeat in strict vertical and horizontal tiles, it can become even more obvious when the stroke orientation does not align with the paint server’s.

As with gradients, a userSpaceOnUse approach is recommended to avoid problems with objectBoundingBox units. You can still use bounding box patterns if your shape is sure to have a valid bounding box (i.e., it isn’t a horizontal or vertical straight line), but the scale of the pattern will be based on the scale of the fill region, not the scale of the stroke.

Example 13-6 uses various patterns from Chapters 10 and 11 to stroke some basic shapes—with varying degrees of effectiveness, as shown in Figure 13-7.

[image: scpg 1307]
Figure 13-7. Shapes stroked with various patterns

Example 13-6. Using a gradient to add information to a line chart

<svg xmlns="http://www.w3.org/2000/svg"
 width="4.3in" height="4.3in" viewBox="0 0 400 400">
 <title>Patterned Strokes</title>
 <defs>
 <!-- pattern definitions clipped --> [image: 1]
 </defs>
 <g style="stroke-width: 40px; fill: lightSkyBlue;" > [image: 2]
 <rect x="20" y="20" width="360" height="360"
 stroke="url(#pinstripe) gray" /> [image: 3]
 <polygon points="200,30 370,200 200,370 30,200"
 stroke="url(#scales-pattern) green"/> [image: 4]
 <circle cx="200" cy="200" r="90"
 stroke="url(#gradient-pattern) peachPuff"/> [image: 5]
 </g>
</svg>

	[image: 1]

	The patterns (and their constituent gradients) are copied directly from Examples 10-5, 10-6, and 11-1, so they are not reprinted here.

	[image: 2]

	All the shapes will have a thick, 40px-wide stroke over top of a light blue fill.

	[image: 3]

	The rectangle uses the pinstripe pattern from Example 10-6.

	[image: 4]

	The diamond-shaped <polygon> uses the fish scale pattern from Example 10-5.

	[image: 5]

	The circle uses the layered gradients from Example 11-1. Along with the other shapes, it is given an appropriate fallback color, just in case.

The small, repeated pattern of the fish scales looks quite effective on the wide strokes. The pinstripes may or may not have the effect you want: the vertical stripes go across the horizontal strokes of the square, but down the length of the vertical strokes. The layered gradients create quite an unusual effect. The gradients were compiled using a bounding box pattern; because that bounding box doesn’t fill up the entire stroke region, it is tiled on each side, creating sharp changes in color.

As with gradients, there are ways to work around the problems. For example, some striped stroke effects can be created with dashed strokes. To avoid tiling when using an object bounding box pattern for stroke, you can set the x, y, width, and height attributes to define a pattern tile that is large enough to include the stroke region (i.e., x and y are negative, while width and height are greater than 100%). All of this will become easier in the future with multiple strokes and stroke bounding boxes.

Chapter 2. The Painter’s Model

If I asked you to draw a yellow circle with a blue outline, would it look the same as if I asked you to draw a blue circle and fill it in with yellow?

If I asked you to draw a red pentagon and a green square centered on the same spot on a page, would most of the image be red or green?

There are no hard-and-fast rules when you’re drawing things by hand. If someone gives you ambiguous instructions, you can always ask for clarification. But when you’re giving instructions to a computer, it only has one way to follow them. So you need to make sure you’re saying exactly what you mean.

Even if you use SVG a lot (and we’re going to assume you use it at least a little), you probably haven’t given much thought to how the computer converts your SVG code into colored patterns on the screen. If you’re going to really make the most of those colored patterns, however, you need to know how your instructions will be interpreted.

This chapter discusses the basics of the SVG rendering model, the process by which the computer generates a drawing from SVG markup and styles. It reviews the basic fill and stroke properties that define how you want shapes or text to be painted. The entire rest of the book can really be summed up as different ways you can specify fill or stroke values.

The SVG rendering model is known as a painter’s model. Like layers of paint on a wall, content on top obscures content below. The SVG specifications define which content gets put on top of which other content. This chapter also discusses z-index and paint-order, two properties that allow you to change up the rendering rules. These properties are newly introduced in SVG 2, and are only just starting to be supported in web browsers. We therefore also show how you can achieve the same effect with SVG 1.1 code.

Fill ’Er Up with the fill Property

The basic elements and attributes in your SVG code define precise geometric shapes. For example, a one-inch square, positioned with its upper-left corner at the coordinate system origin, looks like this:

<rect width="1in" height="1in" />

A circle 10 centimeters in diameter, centered on the middle of the coordinate system, is created with the following code:

<circle cx="50%" cy="50%" r="5cm" />

Note

This book isn’t going to spend much time on the geometry of the shapes you are painting. But as a reminder, Scalable Vector Graphics are often, well, scaled. Inches and centimeters will not necessarily match the distances on your real-world ruler. They can be affected by the resolution of your monitor, zoom level of your browser, and of course any viewBox or transform attributes on your SVG elements.

The scale affects all units equally, however; there will always be the same number of centimeters per inch (2.54) as on your ruler. In all except the oldest web browsers, 1in will also always be equal to 96px (CSS pixel units). It will also be equal to 96 of SVG’s unitless user coordinate values, which are always interchangeable with px. Other SVG software is also switching over to this standard, established by the CSS Values and Units Module Level 3.

If you include either the circle or the rectangle markup (or any other shape or text) in an SVG without any style information, it will be displayed as a solid black region exactly matching the dimensions you specify. This is the default fill value: solid black.

The fill property tells the SVG-rendering software what to do with that geometric shape. For every pixel on the screen—or ink spot on the paper—the software determines if that point is inside or outside of the shape. If it is inside, the software turns to the fill value to find out what to do next.

In the simple case (like the default black), the fill value is a color and all the points inside the shape get replaced by that color. In other cases, the fill value is an instruction to look up more complicated painting code. Where to look it up is indicated by a URL referencing the id of an SVG element representing the instructions (a paint server, which we’ll talk more about starting in Chapter 5).

Tip

If you don’t want the software to fill in the shape, the fill property also takes a value of none.

A final option for fill (and also stroke) is to use the keyword currentColor. This keyword always evaluates to the current value of the CSS color property on any given element. The color property itself has no direct effect in SVG, but in combination with currentColor, it has two main uses:

	
To coordinate inline SVG icons with surrounding HTML text. The color property’s primary use is for setting the color of CSS-styled text. An inline SVG graphic that uses currentColor will therefore inherit the text color from the surrounding HTML markup.

	
To provide an indirect inherited style value for reused content. SVG graphics duplicated with a <use> element inherit styles, including fill and stroke, from the context in which they are used. By setting accent details on the reused graphics to use currentColor, this can be manipulated separately from the main fill and stroke when the graphic is reused by changing the color value on the <use> element.

By default, the fill is painted solid and opaque (unless there are different instructions in the paint server). The fill-opacity property can adjust this. It takes a decimal number as a value: values between 0 and 1 cause the shape’s paint to be blended with the colors of the background. A value of 1 (the default) is opaque, while a value of 0 has much the same effect as fill: none. We’ll discuss opacity in detail in Chapter 4.

When it is not clear which sections of the shape are inside versus outside, the fill-rule property gives the computer exact instruction. It affects <path> elements with donut holes inside them, as well as paths, polygons, and polylines with crisscrossing edges.

The fill-rule property has two options:

	
evenodd switches between inside and outside every time you cross an edge.

	
nonzero (the default) gets “more inside” when you cross an edge that is drawn in the same direction as the last one, and only gets back to outside again when you have canceled them all out by crossing edges in the opposite direction.

Example 2-1 draws a crisscrossed <polygon>, first with the default nonzero fill rule and then with an evenodd fill rule; Figure 2-1 shows the result. The shapes have a thin stroke around the edges so you can see them even when the shape is filled on both sides of the edge.

[image: scpg 0201]
Figure 2-1. A polygon with nonzero fill rule (left) and with evenodd fill rule (right)

Example 2-1. Modifying the fill region with the fill-rule property

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 200" width="4in" height="2in">
 <title xml:lang="en">Fill-rule comparison</title>
 <rect fill="lightSkyBlue" height="100%" width="100%" /> [image: 1]

 <polygon id="p"
 fill="blueViolet" stroke="navy"
 points="20,180 20,20 180,20 180,180 60,60 140,60" /> [image: 2]
 <use xlink:href="#p" x="50%" fill-rule="evenodd" /> [image: 3]
</svg>

	[image: 1]

	The opening <svg> element establishes the coordinate system and sets the default size of the printed figure. A <rect> element adds a solid-color backdrop. For this simple SVG code, styles are set with presentation attributes.

	[image: 2]

	The basic polygon has fill and stroke styles, but the fill-rule property will inherit the default nonzero value.

	[image: 3]

	A duplicated copy of the same polygon is offset horizontally by half the width of the SVG. The copied polygon will inherit the fill-rule="evenodd" value set on the <use> element.

No matter how many times the edges or subpaths cross over each other, each point is either inside or outside the shape. Areas are not painted twice just because they are inside two different subpaths. That may not seem like a relevant distinction when the fill is a solid color, but it becomes important when the fill is partially transparent.

Filling in the Future

The discussion of the fill property in this section has focused on the way it is currently defined in the stable SVG 1.1 specifications. The in-progress SVG 2 specifications will offer more flexibility to the way shapes are filled, most notably by allowing a single shape to have multiple fill layers. These proposed features will be discussed in more detail elsewhere in the book, in “Future Focus” sidebars such as this.

Every shape in SVG, as well as text, can be filled—and will be filled by default. This includes open-ended <path> elements and <polyline> elements, which define a shape where the end of the line does not connect with the beginning. The fill region of these shapes is created by connecting the final point back to the beginning in a straight line. If it ends up crossing other edges as it does so, the fill-rule calculations apply.

Tip

Open segments within a <path> are closed by connecting them back to the initial point on that subpath: the last point created by a move-to command.

Even a straight <line> element is technically filled in by default: however, because the return line that connects the end point to the beginning exactly overlaps the original line, the resulting shape does not enclose any area. No points are inside the shape, and so no points are affected by the fill value. You need to stroke the line if you want to see it.

Stroke It with the stroke Property

In computer graphics, stroking a shape means drawing a line along its edge. Different programs have different interpretations of what that can mean.

In SVG (currently, anyway), stroking is implemented by generating a secondary shape extending outward and inward from the edges of the main shape. That stroke region is then painted using the same approach as for filling the main shape: the software scans across, and determines whether a point is inside or outside the stroke. If the point is inside, the software uses the painting instructions from the stroke property to assign a color.

Tip

Each section of the stroke shape is only painted once, regardless of whether the strokes from different edges of the shape overlap or cross each other.

The default for stroke is none, meaning don’t paint a stroke region at all. Just like for fill, the other options are a color value or a reference to a paint server element.

Just as fill-opacity can modify fill, there is a stroke-opacity property to modify the stroke paint. Both fill-opacity and stroke-opacity will be discussed in more detail in Chapter 4.

There are many other stroke-related properties. We’re not going to talk about them much in this book, but they control the geometry of the stroke region. As a quick reference, they are as follows:

	stroke-width

	
The thickness of the stroke, as a length, number of user units, or percentage of the weighted width and height of the coordinate system. In SVG 1.1, the stroke region is always centered on the edge of the shape, so half the stroke width extends outside it.

	stroke-linecap

	
The approach to use for stroking around open ends of a path or line; the default butt trims the stroke tight and perpendicular to the endpoint. The other options, round and square, extend the stroke by half the stroke width, in the specified shape.

	stroke-linejoin

	
The approach to use for stroking around corners in the shape; the default miter extends the strokes in straight lines until they meet in a point. The other options are round (use a circular arc to connect the two strokes) and bevel (connect the two strokes with an additional straight line).

	stroke-miterlimit

	
The maximum distance to extend a mitered line join beyond the official edge of the shape, as a multiple of the stroke width (default 4 times the width). If the stroke edges don’t meet in a point within that distance, a beveled line join is used instead.

	stroke-dasharray

	
A pattern of distances (dashes and gaps) for stroking and not stroking the shape. The default, none, creates a continuous stroke over the entire shape. The ends of each dash are affected by the stroke-linecap setting.

	stroke-dashoffset

	
The distance into the dasharray pattern at which to position the beginning of the path. Default is 0.

Example 2-2 mixes and matches various stroke line join and line cap options on copies of the same polyline, to generate the effects shown in Figure 2-2.

[image: scpg 0202]
Figure 2-2. A polyline with various stroke shapes—left to right: round, beveled, and mitered line joins; top to bottom: round, butt, and square line caps; bottom row: square line caps and a thicker stroke-width

Example 2-2. Controlling the geometry of the stroke region

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 400" width="4in" height="4in"
 xml:lang="en">
 <title>Stroke join and cap styles compared</title>
 <style type="text/css">
 .backdrop { [image: 1]
 fill: peachPuff;
 }
 .shapes {
 fill: none;
 stroke: indigo;
 stroke-width: 8px;
 }
 .join-round {
 stroke-linejoin: round;
 }
 .join-bevel {
 stroke-linejoin: bevel;
 }
 .join-miter {
 stroke-linejoin: miter;
 stroke-miterlimit: 10;
 }
 .cap-round {
 stroke-linecap: round;
 }
 .cap-butt {
 stroke-linecap: butt;
 }
 .cap-square {
 stroke-linecap: square;
 }
 .wider {
 stroke-width: 14px;
 }
 </style>
 <defs>
 <polyline id="p2"
 points="20,20 20,80 100,80 40,20 100,20" /> [image: 2]
 </defs>
 <rect class="backdrop" height="100%" width="100%" />

 <g class="shapes">
 <g class="cap-round">
 <title>Round line caps</title>
 <g id="row"> [image: 3]
 <use xlink:href="#p2" x="0" class="join-round">
 <title>Round line joins</title>
 </use>
 <use xlink:href="#p2" x="35%" class="join-bevel">
 <title>Beveled line joins</title>
 </use>
 <use xlink:href="#p2" x="70%" class="join-miter">
 <title>Mitered line joins</title>
 </use>
 </g>
 </g>
 <g class="cap-butt"> [image: 4]
 <title>Butt (cropped) line caps</title>
 <use xlink:href="#row" y="25%" />
 </g>
 <g class="cap-square">
 <title>Square line caps</title>
 <use xlink:href="#row" y="50%" />
 </g>
 <g class="cap-square wider"> [image: 5]
 <title>Square line caps with a wider stroke</title>
 <use xlink:href="#row" y="75%" />
 </g>
 </g>
</svg>

	[image: 1]

	For this more complex example, a <style> block of CSS rules is used to set fill and stroke properties on the elements according to their classes.

	[image: 2]

	The basic shape, a <polyline>, is predefined in a <defs> section.

	[image: 3]

	Three copies of the polyline are arranged to form each row in the comparison grid. Each one will have a different stroke-linejoin style.

	[image: 4]

	The row as a whole is then duplicated and shifted vertically, assigning a new stroke-linecap style each time.

	[image: 5]

	The final row also inherits a different value of stroke-width.

Unlike fill, the stroke region is affected by open-ended paths. Stroked <polyline> elements look different from a <polygon> with the same points. A <path> element (or subpath thereof) that is closed with a Z command has a line join at the final point, while open subpaths start and end with line caps.

Next-Generation Strokes

Stroking will also change in SVG 2, by allowing a shape to have multiple layered strokes. Many proposals for greater control of the stroke geometry are also being considered; these will be developed in a separate SVG Strokes module.

Stroking the Fill and Filling the Stroke

When a shape has both fill and stroke paint, some pixels are included in both the fill area and the stroke region, and therefore have two different colors specified. As with all of SVG, the painter’s model applies: if both colors are opaque, the color of the layer on top replaces the color of the layer below.

But which layer is “on top”?

By default, the stroke is painted on top of the fill. This means that you can always see the full stroke width. It also means that if the stroke is partially transparent, it will appear two-toned. The fill paint color will be visible under the inner half of the stroke region but not under the outer half.

Tip

Stroke markers—symbols that display on the corners of custom shapes—are painted after the fill and stroke, in order from start to end of the path.

In SVG 1.1, the only way to draw a stroke underneath the fill is to separate it into two shapes: one with stroke only, and then the same shape duplicated in the same position (with a <use> element), filled but not stroked:

<g stroke="blue" fill="red">
 <g fill="none">
 <path id="shape" d="..." />
 </g>
 <use xlink:href="#shape" stroke="none" />
</g>

The preceding snippet makes extensive use of inherited styles. The <path> itself does not have any fill or stroke values directly set; it inherits from its surrounding. The overall stroke and fill values are set on the containing <g>; one or the other is then canceled out on the nested group and the <use> element.

SVG 2 introduces the paint-order property to make this effect much easier to achieve. Its value is a list of whitespace-separated keywords (fill, stroke, and markers) that indicate the order in which the various parts of the shape should be painted. So the same effect could be created with a single element:

<path id="shape" d="..." stroke="blue" fill="red"
 paint-order="stroke fill" />

Any paint layers you don’t specify in the paint-order property will be painted later (markers, in this case), in the same order they normally would be. This means that to swap fill and stroke, you only need to specify the stroke:

<path id="shape" d="..." stroke="blue" fill="red"
 paint-order="stroke" />

The stroke will be painted first, then fill, and finally any markers. The entire fill region will always be visible, even where it overlaps the stroke.

The default value of paint-order (equivalent to fill stroke markers) can be explicitly set with the normal keyword.

Warning

At the time of writing, paint-order is supported in the latest Firefox (since version 31), Blink (since Chromium version 35), and WebKit (since March 2014) browsers. Internet Explorer/Edge and older versions of the other browsers use the default paint order.

The ability to control painting order is especially important with text. Text in SVG can be stroked just like shapes can, to create an outlined effect. However, all but the thinnest strokes tend to obscure the details of the letters.

By painting the fill region overtop of the stroke—in a contrasting color—you can reinforce the shape of the letters and restore legibility. Example 2-3 uses paint-order and a thick stroke to create a crisp outline around heading text. Figure 2-3 shows the result in a supporting browser.

[image: scpg 0203]
Figure 2-3. Outlined text with strokes painted behind the fill

Example 2-3. Stroking without obscuring the finer details of text

<svg xmlns="http://www.w3.org/2000/svg"
 viewBox="0 0 400 80" width="4in" height="0.8in"
 xml:lang="en">
 <title>Outlined text, using paint-order</title>
 <rect fill="navy" height="100%" width="100%" />
 <text x="50%" y="70"
 text-anchor="middle"
 font-size="80"
 font-family="sans-serif"
 fill="mediumBlue"
 stroke="gold"
 stroke-width="7"
 paint-order="stroke"
 >Outlined</text>
</svg>

If you relied solely on paint-order to achieve this effect, your text would be a blocky mess on unsupporting browsers, as shown in Figure 2-4. Some fallback strategies are in order.

[image: scpg 0204]
Figure 2-4. Outlined text with strokes painted using the default order

One solution is to use the CSS @supports conditional rule to only apply the outline effect if paint-order is supported. In other cases, use different styling that provides legible text, if not the desired effect.

Example 2-4 provides a modified version of the code from Example 2-3; the styles have been moved from presentation attributes to a <style> block so that conditional CSS can be applied. The basic styles include a much narrower stroke when painting order cannot be controlled; the @supports block replaces this with the thick stroke and paint-order option.

Example 2-4. Testing support before using paint-order

<svg xmlns="http://www.w3.org/2000/svg"
 viewBox="0 0 400 80" width="4in" height="0.8in"
 xml:lang="en">
 <title>Using @supports to adjust paint-order effects</title>
 <style type="text/css">
 .outlined {
 text-anchor: middle;
 font-size: 80px;
 font-family: sans-serif;
 fill: mediumBlue;
 stroke: gold;

 /* fallback */
 stroke-width: 3;
 }

 @supports (paint-order: stroke) {
 .outlined {
 stroke-width: 7;
 paint-order: stroke;
 }
 }
 </style>
 <rect fill="navy" height="100%" width="100%" />
 <text x="50%" y="70" class="outlined"
 >Outlined</text>
</svg>

The result looks like Figure 2-3 in browsers that support paint-order (all of which currently also support the @supports rule). Figure 2-5 shows how the revised code looks in other browsers.

[image: scpg 0205]
Figure 2-5. Text with a narrower outline when paint-order is not supported

Tip

The stroke-width has been cut by more than half between Figures 2-3 and 2-5. However, the stroke only appears slightly narrower, because the inside half of the stroke is now visible on top of the fill.

If changing the appearance with @supports is not acceptable to you, the only alternative is to duplicate the elements to create one for stroke and one for fill. Depending on the way you are using your SVG, and how much control you have over its styling, you may be able to use a script to perform the conversion for you when necessary. Because paint-order is a new style property in CSS, browsers that do not support it will not include it within the style DOM property of each element. You can therefore detect these browsers and generate the extra <use> elements as required.

Example 2-5 provides a sample script that identifies elements by class name and performs the manipulations if required.

Example 2-5. Simulating paint-order with multiple elements

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 80" width="4in" height="0.8in"
 xml:lang="en">
 <title>Faking paint-order with JavaScript</title>
 <style type="text/css">
 .outlined {
 text-anchor: middle;
 font-size: 80px;
 font-family: sans-serif;
 fill: mediumBlue;
 stroke: gold;
 stroke-width: 7;
 paint-order: stroke;
 }
 </style>
 <rect fill="navy" height="100%" width="100%" />
 <text x="50%" y="70" class="outlined"
 >Outlined</text>
 <script><![CDATA[
(function(){
 var NS = {svg: "http://www.w3.org/2000/svg",
 xlink: "http://www.w3.org/1999/xlink"
 };
 var index = 10000;

 var t = document.getElementsByClassName("outlined"); [image: 1]
 if (t &&
 (t[0].style["paint-order"] === undefined)){ [image: 2]
 Array.prototype.forEach.call(t, fakeOutline); [image: 3]
 }

 function fakeOutline(el){
 el.id = el.id || "el-" + index++; [image: 4]

 var g1 = document.createElementNS(NS.svg, "g"); [image: 5]
 g1.setAttribute("class", el.getAttribute("class"));
 el.removeAttribute("class");
 el.parentNode.insertBefore(g1, el);

 var g2 = document.createElementNS(NS.svg, "g"); [image: 6]
 g2.style["fill"] = "none";
 g2.insertBefore(el, null);
 g1.insertBefore(g2, null);

 var u = document.createElementNS(NS.svg, "use"); [image: 7]
 u.setAttributeNS(NS.xlink, "href", "#" + el.id);
 u.style["stroke"] = "none";
 g1.insertBefore(u, null);
 }
})();
]]> </script>
</svg>

	[image: 1]

	The elements to modify are identified by a specific class name, "outlined", for easy access in the script.

	[image: 2]

	The style property of any element (here, the first element selected) can be examined to determine if it supports the paint-order property. A strict equality test (===) is used to distinguish an empty value (no inline style was set on the element) from an undefined value (the property name is not recognized).

	[image: 3]

	If the fallback is required, the fakeOutline() method is called for each element that had the class name. The forEach() array method is used to call the function as many times as needed. However, the list returned by getElementsByClassName() is not a true JavaScript Array object, so t.forEach(fakeOutline) cannot be used. Instead, the forEach() function is extracted from the Array prototype and is invoked using its own call() method.

	[image: 4]

	The fakeOutline() function will duplicate the outlined element with a <use> element, so it will need a valid id value; if it doesn’t already have one, an arbitrary value is added with a unique index.

	[image: 5]

	The element is replaced by a group that is transferred all of its classes. This of course requires that all fill and stroke styles are assigned via class, and not by tag name or via presentation attributes. The insertBefore() method is used to ensure that the new group will have the same position in the DOM tree as the element it is replacing.

	[image: 6]

	A nested group will hold the original element, but will prevent it from inheriting the fill style.

	[image: 7]

	Finally, a <use> element duplicates the element, but cancels out the stroke style so that it only inherits fill styles. It is inserted into the main group as the last child (“before” nothing), so that it will be drawn on top of the version with no fill.

The result of running the script (in a browser that does not support paint-order) is shown in Figure 2-6. Although it appears identical to Figure 2-3, the underlying DOM structure is much more complex.

[image: scpg 0206]
Figure 2-6. Text duplicated to mimic a stroke-first paint order

As you can tell, the script is rather convoluted for such a simple effect. Creating a more generic fallback script—a complete polyfill for the property—is even more difficult, as you need to account for all the different ways in which a style property can be applied to an element. Effectively, you need to re-create the work of the CSS parser, indentifying all the style rules it discarded as invalid.

In most cases, if the final appearance is essential in all browsers, it is easier to create the layered stroke and fill copies of the object within your markup, directly creating the structure that would be generated by the script:

<g class="outlined">
 <g style="fill: none;">
 <text id="el-10000" x="50%" y="70">Outlined</text>
 </g>
 <use style="stroke: none;" xlink:href="#el-10000" />
</g>

Regardless of whether you are hard-coding the markup or dynamically generating it with a script, the more complex DOM structure must be considered in any other scripts active in the document.

Additional Ordering Control with z-index

When different shapes (or other content) overlap, the painter’s model again comes into effect: the graphic is painted element by element, and the last element shows up on top.

The order of the layers in an SVG document is therefore defined by the order of the elements in the code: shapes, text, and images are layered together in the exact order they are specified in the markup. In SVG 1.1, the only way to change the order in which elements are painted is to change the order of the elements in the DOM.

There are two main problems with this:

	
It forces you to break up logical groupings of your content. For example, instead of using a <g> element to group a text label with the graphic it describes, you often need to move all your text labels to the end of the file so they aren’t obscured by other shapes.

	
You cannot change the visual layering of elements using SMIL or CSS animations; you must use JavaScript to manipulate the DOM—which can have a negative impact on performance and interrupts user-input focus.

In contrast, CSS layout (since version 2) uses the z-index property. Elements within the same CSS layout stacking context that overlap (due to fixed or relative positioning or negative margins) are ordered from bottom to top according to the value of the z-index property. The exact values aren’t important, only the order.

SVG 2 adopts z-index for rearranging SVG layers. The default value is 0, and individual elements can be given positive integer values to pull them in front of the rest of the graphic or negative integer values to drop them behind.

Warning

At the time of writing, none of the major browsers have implemented z-index stacking for SVG elements.

The ability of z-index to reorder elements is constrained when certain style properties are used on a parent element. Filters, masks, and opacity values less than 1 all cause child content to be flattened into a single stack that is then layered as a whole.

Tip

Unlike in CSS layout, a two-dimensional coordinate system transformation would not create a new stacking context for SVG. This reflects the fact that transformations are a normal part of SVG layout.

Again, replacing the functionality of z-index with JavaScript would require a complex polyfill that scanned all stylesheets and calculated the final cascaded value for each element. It only gets more complicated from there: because most browsers do support the z-index property on elements controlled by CSS layout, you cannot use the @supports rule or simple JavaScript checks to determine whether it is supported for SVG.

Even with a working script, you would not be able to replace the most important benefit of z-index: the ability to separate the logical organization of your DOM from the painting order. Your markup might be written in a logical order, but if you are using scripts to reorder it, the shuffled version will be used by accessibility tools such as screen readers, or when copying and pasting text.

Unfortunately, therefore, current best practice is to organize the code so that elements are in the order you want them to be painted. For screen readers, you can indicate the logical grouping and order of elements with ARIA attributes: aria-owns to create a virtual parent-child relationship, and aria-flowto to define the reading order. Dynamic changes to the painting order of interactive elements are nonetheless likely to cause problems with user-input focus.

Take a Hint with Rendering Properties

One final class of style properties helps control how the browser applies paint data to graphics. After that, the rest of the book will focus on what you are painting in those shapes.

These final properties are considered to be “hints” from you—the author of the SVG—to the browser or other software converting your code into colored pixels. They offer suggestions as to which features you consider most important, if the browser has to compromise performance or appearance in some way. From most to least likely to have a consistent impact, they are:

	shape-rendering

	
How the browser should adjust the edges of the shape to accommodate limitations in the screen resolution. There are four options:

	
auto, the default, which instructs the browser to select the best optimization.

	
optimizeSpeed, which indicates that fast rendering is the most important feature (probably because the graphic is being animated); the edges of the shape may not be drawn precisely. However, the exact changes may vary by browser and in many cases will be the same as auto.

	
crispEdges, which indicates that the browser should maximize contrast around the edges of the fill and stroke regions. This usually means the edges will be aliased to the nearest pixel boundary, instead of having edge-pixels partially colored (anti-aliased). For vertical and horizontal lines, this can create a sharper image, but results for curves and diagonal lines are usually less satisfactory.

	
geometricPrecision, which indicates that the browser should represent the exact shape as precisely as possible, and may use anti-aliasing to do so if required.

Figure 2-7 compares the crispEdges and geometricPrecision values for both straight and curved sections. Each shape consists of a single path with a 1px-wide stroke. The crisp-y straight edges are sharp and clean, but uneven: the stroke rounds up or down to either one or two full screen pixels depending on the exact position of the line (narrower strokes may round down to nothing). The curves are aliased into sharp steps. In contrast, with geometrically precise rendering, the same amount of color is allocated to each point in the path, but that color may be blurred across multiple device pixels if required.

[image: scpg 0207]
Figure 2-7. Effect of the shape-rendering property on a thin-stroked path: crispEdges (top) and geometricPrecision (bottom)

	text-rendering

	
How the browser should adjust the shape and position of letters within text. The four options are:

	
auto (the default)

	
optimizeSpeed, which is the same as auto in most browsers; for large text, this might turn off text layout adjustments (Firefox by default uses legibility adjustments for text larger than 20px).

	
optimizeLegibility, which indicates that the browser should use all information at its disposal to adjust the rendering of individual letters and the layout of strings of text to make it easier to read. In practice, some browsers adopted this as a suggestion to turn on letter kerning and non-essential ligatures specified in the font file.

	
geometricPrecision, which indicates that the browser should treat the letters as if they were geometric shapes, and draw them exactly without adjustments from resolution-based font hinting.

In SVG 1.1, the exact impacts of text-rendering were not well defined. It was not consistently implemented for SVG text; however, the property was adopted by some browsers to apply to non-SVG content for kerning and ligature control.

The exact impact of the different options will likely be clarified in future specifications (SVG 2 or a CSS module). The introduction of the font-variant-ligatures and font-kerning properties should help separate those features from rendering quality (although speed-optimized rendering may still cause those settings to be ignored). Figure 2-8 shows the effect of the settings on common system fonts in Firefox 39 on a Windows computer; optimized speed and optimized legibility look the same, but at small font sizes can be quite different from geometrically precise rendering.

[image: scpg 0208]
Figure 2-8. Effect of the text-rendering property on text of different sizes in Times New Roman (left) and Verdana-system fonts (right)—top to bottom in each set: optimizeSpeed, optimizeLegibility, geometricPrecision

	color-rendering

	
How precise the browser should be about calculating colors, particularly when blending elements or generating gradients. The options use the standard hint keywords:

	
auto

	
optimizeSpeed

	
optimizeQuality

Browsers do not currently change any behavior in response to this setting.

	image-rendering

	
How the browser should calculate the appearance of raster images when the displayed size of that image does not exactly match the number of pixels defined in the image file. In SVG 1.1, the options were the standard auto, optimizeSpeed, and optimizeQuality. However, in practice it became clear that there was not always agreement on how to create a “quality” scaled-up image. The algorithms that create the best results for photographs can create a blurred effect when the image contains sharp edges.

The CSS Image Values and Replaced Content Module Level 3 has adopted the image-rendering property and deprecated the optimizeSpeed and optimizeQuality values. The optimizeSpeed option is replaced by a pixelated value (scale up each pixel as a square). An additional option, crisp-edges, would apply some smoothing but maintain high-contrast edges.

At the time of writing this book, the optimizeQuality option, which had recommended smooth interpolation for photos, is covered under the default auto setting, reflecting the practice in existing browsers. There is some discussion of having a separate smooth property, to allow alternative auto options.

A distinct but related set of properties are the color-interpolation instructions, which we’ll discuss in more depth in Chapter 3. The color-interpolation setting is not (supposed to be) a hint, but rather a requirement. However, a value of optimizeSpeed for color-rendering gives the browser permission to ignore the color-interpolation mode if it would slow down the rendering. In practice, however, low support for the color interpolation options makes this distinction irrelevant.

